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v CHAOS, FRACTALS, AND DYNAMICS

over and over, and then asking what happens. Amazingly, for even the sim-
plest mathematical expressions such as quadratic or cubic functions of a real
or complex variable, nobody knows the complete answer. Indeed, there are
many mathematicians worldwide working on precisely this question. Note
how easy it is to explain this unsolved problem to high school students. With
the quadratic formula and elementary graphing techniques, these students
feel they know everything there is to know about quadratic functions. My
experience is that they are quite surprised to know that not everything is
known, and then many are quite eager to plunge in and explore on their own.

Since computers are readily available to most students, now is an espe-
cially auspicious time to introduce students to dynamical systems, and this
is my second reason for writing this book. The process of iteration is impos-
sible to carry out by hand but extremely easy to carry out with a calculator
or computer. A very simple six- or seven-line BASIC program allows a stu-
dent to compute hundreds and thousands of iterations of a single function.
Students get the feeling that they have the power to explore the uncharted
wilderness of the dynamics of quadratic functions, not to mention the many,
many other simple functions whose dynamics are less well understood. This
is a radical new development in mathematics instruction. It gives mathe-
matics an experimental component, a laboratory. Much as the physicists,
chemists, and biologists have long used the laboratory as an essential com-
ponent of their introductory courses, now we in mathematics have the same
opportunity, and the results should be a much higher appreciation for and
recognition of the importance of research mathematics by contemporary stu-
dents.

My last reason for writing this book is to expose students to the great
beauty of the field of dynamical systems. We in mathematics continually
tell our students how beautiful mathematics is; the order and the structure
and the interrelations between the various branches of mathematics which
attract us as mathematicians should motivate us to attempt to communicate
this to others as well. But, more often than not, we fail to show our students
the beauty that we see. However, now, with the computer as a tool, this
beauty is at our fingertips. The ease with which students can compute and
display extraordinarily intricate Julia sets and the Mandelbrot set make these
geometric images quite accessible to them. My experience is that students
are quite enthralled by these images. They readily produce Julia set after
Julia set and then begin to ask, “What is going on here?” This is the
beginning of a novel mathematical experience, the realization that, in many
cases, nobody knows the answer to this question.
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PREFACE i1l

Preface

There are a number of reasons why I have written this book. By far
the most important is my conviction that we in mathematics education —
whether on the secondary or collegiate level — fail miserably to communicate
the vitality of contemporary mathematics to our students. Let’s face it:
most high school and college mathematics courses emphasize centuries-old
mathematics. As a consequence, many students think that new mathematics
ended in the time of Euclid and Pythagoras (or, if they know calculus, in
the time of Newton and Leibniz). Many students feel that mathematics is
a dead discipline, that, as a career, it leads nowhere but to teaching (and
thereby the perpetuation of a dead discipline). They have no appreciation
or understanding of what a mathematician really does or thinks about.

I can only imagine the outcry that would occur if a physicist, chemist, or
biologist taught only seventeenth century science in their secondary school
courses. Yet we as mathematicians think nothing of doing exactly that! It is
true that mathematics is a “cumulative” science, but there are exceptions to
this and we should strive at every opportunity to give our students a glimpse
of what is new and exciting in mathematics.

I feel that one such opportunity is presented by the field of dynami-
cal systems, the branch of mathematics that studies processes that move or
change in time. Dynamical systems are encountered in all branches of sci-
ence. For instance, the changing weather patterns in meteorology, the ups
and downs of the stock market in economics, the growth and decline of pop-
ulations in ecology, and the motion of the planets and galaxies in astronomy
are all examples of dynamical systems. The field of dynamical systems is
an important area of contemporary research in mathematics which enjoys
the additional advantage of being quite accessible to the nonmathematician.
One aspect of dynamical systems involves iterating a mathematical function
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It seems to me, then, that the accessibility and allure of dynamical sys-
tems theory make it a natural subject to introduce to high school and college
students. I feel that the exposure to contemporary mathematics is much,
much more valuable in the long run than a continued push to learn more
tools and techniques for “what comes later.” I also feel that the realization
that mathematics is an alive and vital discipline will help dispel the thoughts
of students that mathematics as a discipline leads nowhere.

A NOTE TO TEACHERS

The goal of this book is to provide teachers with material that will en-
able them to excite their high school or college students about mathematics.
The mathematical exposition should be comprehensible to students with a
solid Algebra II background. Some trigonometry is necessary for later chap-
ters (particularly Chapters 7 and 11) and the sine and cosine functions are
used as occasional examples throughout. However, a detailed knowledge of
trigonometry is not necessary to read most of the book.

This book can be used in a classroom setting in a variety of ways. The
material in this book can provide “special topics” that may be sprinkled
about various areas of the secondary school or college curriculum. For ex-
ample, the material on iteration and graphical analysis is a topic that fits
naturally into a discussion of functions and graphing techniques in general.
The computer programs to generate orbits, fractals, Julia sets, and the like
are quite short and can easily be incorporated into an elementary program-
ming course. Many of the topics in the book make excellent projects for
mathematics clubs. The ideas of dynamics provide a perfect topic for a
one-semester course in the final year of high school (replacing, perhaps, an
oversimplified calculus course) or as a course in college used by liberal arts
students to fulfill a mathematics requirement. Such courses might even in-
spire some students to continue taking mathematics rather than jeopardize
future possibilities for a career in science by discontinuing their mathematical
studies too early.

In each chapter at least one new purely mathematical topic is introduced.
These range from the concepts of iteration, orbits, graphical analysis, and
bifurcation in the earlier chapters, to the algebra of complex numbers, po-
lar representations, and complex square roots in later sections. A number
of opportunities for the reader to pursue further work in this area are also
included. These are classified as exercises, experiments, and projects. Ex-
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ercises usually involve routine computations using material just introduced.
Experiments require the reader to use computer programs from the text to
“discover” related phenomena. Projects require the reader to modify these
programs in various ways to produce different output or to make the com-
puter program run faster.

A few words about the programs: The computer programs presented in
this text were written in the BASIC language. The rationale for this is to
make the material in the book accessible to as wide an audience as possible.
Students or instructors who know or have access to other languages such as
PASCAL or C should have no difficulty converting the programs to these
languages. Indeed, this would be desirable, since many of the programs
involving Julia and Mandelbrot sets take quite a while to run on a personal
computer.

This book is not intended to be an introductory programming text; how-
ever, with a little coaching, students who have no programming experience
can use the book. Only the statements and graphics commands that are
absolutely necessary for our purposes are introduced. Students with some
programming experience should be able to build on the programs in the text
to create custom-made programs, which include additional features such as
color output or graphics input using a mouse. On the other hand, students
with no programming experience can simply type the given programs into
the computer and then observe the dynamical behavior. It should be noted
that the early programs in the text are quite short, often less than ten lines
long. As students gradually become comfortable using the computer, they
can make the simple modifications to the given programs suggested in the
projects and thereby become more adept at programming.

Because the major projects in the book demand so much computer time,
students often enjoy starting their programs after school, running them in
the evening, and then returning to find the output early the next morning.

This book has been intentionally designed so that the level of difficulty
and sophistication required increases as it progresses. In the beginning, stu-
dents use only a scientific calculator or a simple six-line BASIC program
to calculate orbits. The only mathematics necessary are the concepts of
a function and its graph. The heart of the book is the chapters on Julia
sets, the Mandelbrot set, and fractals. Here the student will be exposed to
somewhat longer graphics programs as well as geometric structures in the
complex plane. The final section on the Julia sets of transcendental func-
tions should be regarded as an optional special “treat” for those who wish to
immerse themselves fully in the theory of Julia sets. This section introduces
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complex functions such as the exponential, sine, and cosine functions, so the
mathematical going gets rougher at times.

The basic goal of the book is to introduce the concept of iteration and
to investigate and explain the wonderful structures — Julia sets, the Man-
delbrot set, and fractals — that result from iteration. Accordingly, Chapters
6 and 7 (Julia sets), 8 (the Mandelbrot set), and 9 (fractals) form the heart
of the book. Chapter 9 is independent of Chapters 6-8 and can be read
before these sections. Also, Chapter 7 merely gives additional algorithms for
computing Julia sets and so may be skipped.
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CHAPTER 0 A MATHEMATICAL TOUR 1

Chapter 0

A Mathematical Tour

This book deals with some very interesting, exciting, and beautiful topics
in mathematics — topics which, in many cases, have been discovered only
in the last decade.

In this book you will meet unfamiliar terms such as iteration, orbits,
chaos, fractal, Julia sets, the Mandelbrot set, and many more. Topics such
as these are too new to have entered the high school or college mathematics
curriculum, but at the same time they are so stimulating and alluring that
students considering a background in any area of science should be exposed
to them. We would go even further — some of the images that result from
these topics are so captivating that they may even be called art and should
be experienced by any educated person.

This section is called Chapter 0 for a reason: Unlike the remaining chap-
ters, we will do no mathematics in this section. Rather, we will take you
on a tour of some of the remarkable images that will come later. We won'’t
explain what these images mean now, or even how to generate them. All we
will do is whet your appetite for what comes later when you will see that the
mathematics that lies behind these images is even prettier than the pictures
themselves.

The subject of this book is dynamical systems, the branch of mathematics
that attempts to understand processes in motion. Such processes occur in all
branches of science. For example, the motion of the stars and the galaxies in
the heavens is a dynamical system, one that has been studied for centuries
by thousands of scientists. The ups and downs of the stock market is another
system that changes in time, as is the weather throughout the world. The
changes chemicals undergo, the rise and fall of populations, and the motion of
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a simple pendulum are classical examples of dynamical systems in chemistry,
biology, and physics. Clearly, dynamical systems abound.

What does a scientist wish to do with a dynamical system? Well, since
the system is moving or changing in time, the scientist would like to predict
where the system is heading, where it will ultimately go. Will the stock
market go up or down? Will it be rainy or sunny tomorrow? Will these two
chemicals explode if they are mixed in a test tube?

Clearly, some dynamical systems are predictable, whereas others are not.
You know that the sun will rise tomorrow and that, when you add cream to
a cup of coffee, the resulting “chemical” reaction will not be an explosion.
On the other hand, predicting the weather a month from now or the Dow
Jones average a week from now seems impossible. You say, “I know why I
can predict the motion of the planets and simple chemical reactions but not
the behavior of the weather or the economy — there are simply too many
variables present in meteorological or economic systems to make long-term
prediction possible!” This is indeed true in these cases, but this is by no
means the complete answer. One of the remarkable discoveries of twentieth
century science is that very simple systems, even systems depending on only
one variable, may behave just as unpredictably as the stock market, just as
wildly as a turbulent waterfall, and just as violently as a hurricane. The
culprit, the reason for this unpredictable behavior, has been called “chaos”

by mathematicians.

Because chaos has been found to occur in the simplest of systems, scien-
tists may now begin to study unpredictability in its most basic form. It is
to be hoped that the study of simple systems will eventually allow scientists
to find the key to understanding the turbulent behavior of systems involving
many variables such as weather or economic systems.

In this book we discuss chaos in its ssmplest possible setting. We will see
that chaos occurs in elementary mathematical objects — objects as famul-
jar as quadratic functions — when they are regarded as dynamical systems.
Now you may object because you feel that you know all there is to know
about quadratic functions — after all, they are easy to evaluate and to
graph. But the key words here are dynamical systems. We will treat simple
mathematical operations like taking the square root, squaring, or cubing as a
dynamical system by repeating the procedure over and over. This process is
called iteration. We will perform the same mathematical operation countless
times using the output of the previous operation as the input for the next.
What we will find is, in many cases, chaos, or unpredictability, or extremely
complicated results. So this is one way to generate and then to begin to
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understand chaos, with simple mathematical models. The operation of iter-
ation can be carried out quite easily on a computer and the results tabulated
and viewed using computer graphics. Since these simple expressions when
iterated lead to complete unpredictability, there is little wonder why much
more complicated systems lead to this too.

Our goal will be to take these simple mathematical expressions, iterate
them, and see what happens. Sometimes we will find that, when we input
certain numbers into the process, the result is completely predictable, while
other numbers yield results that are often bizarre and totally unpredictable.
For the types of expressions we will consider, the set of numbers that yield
chaotic or unpredictable behavior is called the Julia set after the French
mathematician Gaston Julia, who first formulated many of the properties of
these sets in the 1920s.

These Julia sets are spectacularly complicated, even for quadratic func-
tions. They are examples of fractals. These are sets which, when magnified
over and over again, always resemble the original image. The closer you look
at a fractal, the more you see exactly the same object. Moreover, fractals
naturally have a dimension that is not an integer, not 1, not 2, but often
somewhere in between, such as dimension 1.4176, whatever that means!

Here are some examples. In Plate 1 we show the Julia set of the simple
mathematical expression z? — 1, where z is a complex number. As we will
describe later, the black points you see in this picture are by no means
chaotic. They are points which, under iteration of the expression z? — 1,
eventually tend to cycle back and forth between 0 and -1. This is not at
all apparent right now, but by the time you have read Chapter 6, you will
consider this example a good fnend. Points that are colored in this picture
also behave predictably: They are points that escape, that tend to infinity
under iteration. The colors here simply tell us how quickly a point escapes.
The boundary between these two types of behavior — the interface between
the escaping and the cycling points — is the Julia set. Look closely at this
boundary. It looks basically like a large ball decorated with many smaller
balls. If we magnify a portion of this picture, as we have in Plate 2, you
see that each of these smaller balls is decorated with many many more tinier
balls. In Plate 3 we magnify more so that you see that this process continues,
the smaller decorations are in turn decorated by even smaller balls, and so
forth. This is the concept of a fractal, one of the central notions in this book.

Here are some other Julia sets for quadratic functions and their magnifi-
cations. Plate 4 shows the Julia set known as Douady’s rabbit, the Julia set
of 22 — .122 4 .745:. Plate 5 magnifies the rabbit and shows that this rabbit
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has ears everywhere! Plates 6 and 7 show another Julia set of a quadratic
function, this time 2z? + .360284 + .100376i. These Julia sets possess an
amazing amount of complexity.

All these Julia sets correspond to mathematical expressions that are of
the form z? 4+ ¢. Here ¢ is a complex number and, as we see, as ¢ varies, these
Julia sets change considerably in shape: How do we understand the totality
of all of these shapes, the collection of all possible Julia sets for quadratic
functions? The answer is called the Mandelbrot set. The Mandelbrot set,
as we will see in Chapter 8, is a dictionary, or picture book, of all possible
quadratic Julia sets. It is a picture in the c-plane that provides us with a
road map of all possible quadratic Julia sets. This image, first viewed in
the late 1970s by Mandelbrot and others, is quite important in dynamics. It
completely characterizes the Julia sets of quadratic functions. It has been
called one of the most intricate and most beautiful objects in mathematics.

Plate 8 shows the full Mandelbrot set. Note that it consists of a basic
central cardioid shape, with smaller balls attached. Unlike the Julia set of
22 — 1, these decorations seem to have antennae attached. Plates 9 and 10
show some of these decorations with their antennae. In Plates 11 and 12
we see that some of these antennae become quite complicated — they even
resemble seahorses at times or groups of elephants marching around a curve.
Magnifications of these images (Plates 13, 14) show the incredible complexity
of the Mandelbrot set. Plates 15-17 yield a surprise; buried deep within the
Mandelbrot set are smaller copies of the entire set. So we can play the same
game over and over, delving deeper and deeper into the Mandelbrot set,
finding more and more interesting phenomena.

The Julia sets of complex functions come in all sorts of different shapes.
Plate 18 depicts the Julia set of the expression wie*, while Plate 19 shows
the corresponding image of w1 tan 2.

Julia sets are always fractals, as Plates 20-22 show. These plates depict
the Julia set of the trigonometric sine function. Basically, the black, or
“stable,” region looks like a collection of infinitely many snowmen. But if we
magnify a portion of a snowman, we see that its arms have infinitely many
joints (Plate 21) and each arm has infinitely many pimples (Plate 22).

Julia sets may behave quite strangely when their defining parameters
change. For example, they may literally explode as parameters vary. Look
at the large black region for sin z in Plate 20, but watch what happens to it
when we consider (1 +.11) sin z instead (Plate 23). Plate 24 depicts the Julia
set of 0.36e*, with its very large black region, but Plate 25 shows how this
nonchaotic region evaporates when we consider instead 0.38¢*. There are
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many examples of this type of behavior, as Plates 26-29 further illustrate.
Plate 26 shows a large black region for the expression (.6+ .81) sin z, while the
remaining three images show how this region disappears when we consider
(.61 + .811) sin z instead.

It is quite interesting to watch Julia sets as parameters vary continuously.
For example, in Plates 30-36, we consider the Julia sets for the functions
ccosz as ¢ decreases from n to 2.94. Plate 30 shows a big black stable
region for m cos z, together with infinitely many satellite black regions. For
2.97 cos z, this black region has contracted to a caulifiower-shaped region
(Plate 31) and just below 2.97, this region explodes in color (Plate 32). For
2.96 cos z (Plate 33) we note that the smaller black bubbles appear to be
exploding as well, and further magnification for 2.955 cos z (Plate 34) shows
that, indeed, the regions inside the original figure bear a striking resemblance
to the original figure. Plates 35-36 show fine detail of these Julia sets for
2.95 cos z and 2.94 cos z.

The images in this mathematical tour show quite clearly the great beauty
of mathematical dynamical systems theory. But what do these pictures mean
and how are they produced? These are questions that we will answer in the
remainder of this book.
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Color Plates

Plates 1-3. The Julia set of z? — 1 and several magnifications. These plates

illustrate the fractal, yet very regular, nature of Julia sets. Decorations on
top of decorations on top of decorations....

Plates 4, 5. Douady’s rabbit: the Julia set of 22 — .122 + .745i. Again we
see the fractal nature of a Julia set: everywhere we look, the rabbit’s ears
keep popping up.

Plates 8, 7. More quadratic Julia sets: this time the Julia set of 2? +

.360284 + .100376i. As we vary the constant ¢ in the expression 2% + ¢, we
seem to find completely different structures for the Julia set.

Plate 8. The Mandelbrot set. Incredibly intricate, this set has been called
the most complicated yet most beautiful object in mathematics.

Plates 9, 10. The Mandelbrot set is decorated with infinitely many “balls”
with “antennae.”

Plates 11, 12. Some of the decorations on the Mandelbrot set look like
monsters; others look like chains of elephants.

Plates 13, 14. Further magnification of portions of the Mandelbrot set
show the rich variety of shapes that make up the set.

Plates 15-17. There are “baby” Mandelbrot sets everywhere in the Man-
delbrot set. Here we find several different copies at a magnification of 10%.

Plate 18. The tangled and twisting strings in the Julia set of mie®.
Plate 19. Fractal footsteps on the beach: the Julia set of i tan z.

Plates 20-22. An infinite snowman: the Julia set of sin z and magnifica-
tions.

Plate 23. An explosion into chaos: the Julia set of (1 + 0.11) sin z.

Plates 24, 25. Spiralling galaxies emanating from a fractal fountain: the
Julia sets of (1/e)expz and (1/e + 0.1)exp z.

Plates 26-29. A Siegel Disk crumbles: the Julia sets of (.6 + .8¢)sinz and
its neighbors.

Plates 30-36. A chain of explosions in the cosine family: the Julia sets of
ccos z as ¢ decreases from 7 to 2.94.



Plates 1-3. Julia set of z°-1 and magnifications.




Plate 4. The Rabbit.

Plate 5. Magnification of Plate 4.



Plate 6. The Dragon.

Plate 7. Magnification of Plate 6.



Plate 8. The Mandelbrot set.



Plates 9, 10. Details of the Mandelbrot set.




Plate 11. Elephants.

Plate 12. Monsters.



Plates 13, 14. Magnifications of Plate 12.







Plate 18. The Julia set of wie".



Plate 19. The Julia set of i tan z.



Plates 20-22. Infinite snowmen: the Julia set of sin z and magnifications.




Plate 23. The Juliaset for(1l + 0.1i{)sin z.



Plates 24, 25. The exploding exponential.
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Plates 26-29. Collapse of a Siegel disk.










CHAPTER 1 ITERATION 7

Chapter 1

Iteration

In this chapter we introduce the basic operation of dynamical systems,
iteration. To iterate means to repeat a process over and over again. In
dynamics, the process that is repeated is the evaluation of a mathematical
function, although we will see later that many other processes may be iterated
as well. Without being too technical for the moment, let’s begin by describing
what we mean by a function.

1.1 Mathematical Functions

A function is an operation that converts certain numbers into other,
possibly different numbers. We stress here the word operation, for it is
important to think of a function as an action or a process that changes
numbers each time that it is applied or invoked.

A good example is the square root function. Taking the square root of
a nonnegative number is the process that converts this number to a new
number, its nonnegative square root. For example,

Vi =2
V16 = 4
V2 = 1.41421356...

and so forth. We think of the symbol , /~ as the function that converts certain
numbers — the inputs — into other numbers — the outputs.
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All functions work in essentially the same way. We are given a collection
of numbers — the inputs — and an operation that converts these numbers
to other numbers — the outputs.

Another familiar example of a function is the squaring function. Given
any number z, we may compute with ease the product of that number with
itself, or z°. Note that any real number may serve as input to the squaring
function, but the output is always a nonnegative number. Thus the action
of squaring gives us another example of a mathematical function.

One very important property of a function is that, whenever we apply
a function to a given input, we get one and only one answer as a result.
For example, the square root function yields one and only one output, the
nonnegative square root, whenever it is invoked. Similarly, squaring yields
one and only one result for any given input.

One of the best ways to illustrate what a function does is to use a scientific
calculator. A scientific calculator often comes equipped with a variety of
“function” keys — buttons that play the role of mathematical functions.
You have undoubtedly seen such a calculator with buttons labeled “sin,”
“cos,” “exp,” and so forth. Pressing these buttons computes the important
mathematical functions called the sine, the cosine, and the exponential. You
need not know what the sine, cosine, or exponential functions are to read
this book, but we will often use these functions as examples, so you should
have a calculator or computer at your disposal that will enable you to use
these functions.

Now let’s turn to iteration, the process of evaluating a function repeat-

edly.

1.2 Iteration Using a Scientific Calculator

As we just mentioned, most scientific calculators have a number of spe-
cial keys that correspond to important functions such as z?, \/z, sinz, cos z,
and others. Depressing one of these keys after an initial number z has been
input computes the value of the corresponding function. Iteration involves
repeating this process over and over, using the result of the previous compu-
tation as the input for the next. That is, the process of iteration consists of
selecting an initial z as seed or input and then striking a particular function
key repeatedly.

For example, to iterate the square root function, all we need do is select
an initial z-value and depress the /= key several times. If we select the
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initial value z = 256, then we compute in order

V256 = 16
V16 = 4
Vi=2
V2 = 1.414214...

V1.414214... = 1.189207...
v/1.189207... = 1.090508...
1.090508... = 1.044274...

Continuing in this fashion, we see that repeated applications of the square
root function eventually yield the number 1, which then remains unchanged
or fixed under subsequent iterations.

This result occurs no matter which positive z we use as initial seed. For
example, if we select z = .5, then we find

V.5 =.707107...
Vv.707107. .. = .840896

You should experiment with several other initial positive z values to check
that the values displayed always tend to 1. One of our main goals will be to
explain why this happens.

Experiment 1.1 Use your calculator to check that iteration of the square
root function always eventually leads to the number 1 being displayed, as
long as the initial input is a positive number. Try, as initial inputs, z = 10,
z=0.1, z = 123,456, and z = 0.123456.
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1.3 Functional Notation

At this point, let us introduce some mathematical notation that will be
useful as we proceed. We will denote a mathematical function such as the
square root function by

S(z) = V=

or just S, for short. Here, § means the operation of computing the nonneg-
ative square root of the nonnegative number z. Remember, we always think
of a function as an operation or a process that we apply to given numbers.
When we replace the z with a particular nonnegative number, then the value
of the function becomes a particular number too. For example,

S(256) = 16
S(9) =3
S(1) =1

So § gives us a rule for converting certain initial inputs z into new numbers,
the result of applying the square root function, S(z).

This notation may appear strange and cumbersome at first, but we will
see that it is quite handy later. We will deal with many different functions
in this text, for example, the squaring function

T(z) = z*

the cosine function
C(z) =cosz

and the exponential function
E(z) =expz

The notation F(z) for a function is particularly useful for iteration, for
we can apply the function F any number of times in succession. That is,
we can first compute F(z). Since F(z) is itself a number, we can apply
F to it, thereby getting the new value F(F(z)). Similarly, we may apply
F a third time, getting F(F(F(z))). Clearly, we need better notation for
successive applications of a function F, for otherwise we’ll get lost among all
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the parentheses. So we will write F7(z) to mean the jth application of the
function F. That is,

Fl(z) = F(z)
F?(z) = F(F(z))
F¥(z) = F(F(F(z)))

For example, if S(z) = /z, then

S(t) = J;

$¥(z) = vz
$%(=) = V&

and so forth.

You should always remember that F?(z) does not mean the square of
the number F(z), or F(z) - F(z). Rather, F?(z) means the second iterate
of F at z, namely, F(F(z)). There is a big difference between these two
operations!

Returning to the square root example, if we let S(z) = /z and again
choose z = 256 as our initial input, then we have:

5(256) = 16
5%(256) = S(16) = 4
53(256) = S(4) = 2
5%(256) = S(2) = 1.414214...
5°(256) = 1.189207...
5%(256) = 1.090508 . ...
S57(256) = 1.044274 . ..

5%9(256) = 1.000005. ..

Again we note that successive iterates of 256 converge quite quickly to 1. As
we observed above, this happens no matter which positive number is initially
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input into the calculator. For example, if the initial input is 200, we get

5(200) = 14.14214. ..
$2(200) = 3.760603. ...
$3(200) = 1.939227...
5*(200) = 1.392561...

57°(200) = 1.000005. ...

Even if the initial input z satisfies 0 < z < 1, we still find that iterates tend
to 1:
0 S(.2) = .4472136...

5%(.2) = .6687403...

5%(.2) = 8177654...

$2°(.2) = .9999985. ..

1.4 Orbits

Let’s iterate more of these functions. For example, what happens if we
repeatedly strike the z? key? Clearly, if z > 1, repeated squaring tends to
enlarge the results. In fact, after only a few iterations, repeated squaring
leads to an overflow message from the calculator. This happens because the
numbers have become too large for the calculator. If we write T(z) = z?,
another way of saying this is

T"(z) 200 as n— o0

if z > 1; the notation T™(z) — oo means that the nth iterate of any z > 1
tends to get larger and larger, eventually becoming larger than any positive
number whatsoever. In plain English, we say that T™(z) approaches infinity
as n tends to infinity.

What if 0 < 2 < 17 Then iteration of T yields a different answer. Suc-

cessive squarings of such numbers yield smaller and smaller positive results,
SO

T%(z) -0 as n— o
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when 0 < z < 1. This means that T"(z) gets closer and closer to 0 as n
increases. Of course, T™(z) never equals 0 exactly for any n, because the
only number whose square is 0 is 0 itself; the iterates of z simply approach
0 without ever reaching 0. It is true that your calculator will eventually
display the number 0.0000... when you compute these iterates, but this
simply means that these numbers have become too small to be “seen” on
the calculator’s display. Finally, in the intermediate case, z = 1, it is clear
that T"(z) = 1 for all n. This point is called a fized point because T leaves
it fixed; the point never changes, or “moves,” under iteration of T. So
the iteration of T yields three different behaviors, depending upon whether
0<2<]l,z2=1,orz> 1.

Exercise 1.2 Extend this analysis to the case of negative z-values. What
can you say about T*(z)if (a) z < —1;(b) -1 <z < 0;(c) z = —-17

The list of successive iterates of a point or number is called the orbit of
that point. For example, the orbit of 2 under the squaring function T'(z) = z*
is given by the list:

2,4,16,256,65536,...

Similarly, the orbit of .5 is

9, .25,.0625,.00390625, . . .

The list of numbers that make up an orbit may not resemble any “orbit”
that you have ever seen, such as the orbit of a spaceship or the orbit of a
planet, but there is a connection. Iteration of functions is intimately associ-
ated with the field of mathematics known as differential equations. This field
uses calculus to study the behavior of processes in motion. For example, dif-
ferential equations enabled Newton to formulate his theory of gravitational
attraction, which in turn allowed him to predict the motion, or orbits, of
heavenly bodies. Our simple iteration process also describes a system in
motion, and we therefore adopt similar terminology.

Let’s use the calculator to compute some other orbits. For example, let
us use the sinz button on the calculator to compute the orbit (in radians)
of any initial input to the sine function. If we let

S(z) =sinz
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and choose the initial value z = 1.57, we find

S(1.57) = .999..
S?(1.57) = .841..
S%(1.57) = .745...
S5%(1.57) = .678...

S'7(1.57) = .385...
S5'%(1.57) = .375...
S'%(1.57) = .366...
52°9(1.57) = .358...

Slowly, ever so slowly, successive iterates of sinz tend to 0:

S73(1.57) = .185...
S™(1.57) = .196...
S™(1.57) = .194...

S'48(1.57) = .1402...
S1%(1.57) = .1398...
S5'%0(1.57) = .1393....

S52%(1.57) = .099527 ..
52%%(1.57) = .099362..
S¥%(1.57) = .099199...

So the orbit of z = 1.57 is the sequence of numbers 1.57, .999..., .841...,
745 ..., and we have

S*"(1.57) -0 as n — oo
That is, the orbit of 1.57 tends to 0.

Remark. To compute the orbit of 1.57, we have assumed that the sine
function accepts numbers in radians rather than in degrees as input. On
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your calculator, there should be a button which allows you to select either
radian mode or degree mode. In this book we will always assume that inputs
to the sine and cosine functions are given in radians. If you use degrees, you
will often get different answers from ours. Also, some calculators are in

degree mode when they are turned on; others are in radian mode. You
should always check which mode your calculator is using.

Exercise 1.3 Verify that the orbit of z under the sine function tends to 0
no matter what z is initially input. That is, check that

S*(z) -0 as n— o0
for many different z-values.

Exercise 1.4 List the first 15 points on the orbit of 0 for each of the following
functions. Can you predict what happens for all subsequent iterations?

a. F(z)=z+1
b. F(z)=2(z+1)
Cc. F(z)=%(:+l)
d. F(z)=2*-1
e. F(z)=2%-2

We call the process of understanding all of the orbits of a given dynamical
system orbit analysis. Let’s use orbit analysis to understand all of the orbits
of another function, F(z) = 2z. Clearly, F(0) = 0, so F?(0) = 0, F3(0) =
0,.... Each point on the orbit of 0 is 0. Using the terminology introduced
earlier, 0 is a fixed point; it never moves under iteration. On the other hand,
if z > 0, then we have

F*(z) 00 as n— oo

Indeed, we have
F(z) =2z
F%(z) = 4z
F3(z) = 8z
F*(z) = 2"z

and these numbers clearly grow larger and larger as n increases. If z is a
negative, then these numbers become large negative numbers. Therefore,
orbit analysis of F(z) = 2z yields



16 CHAOS, FRACTALS, AND DYNAMICS

1. F*(z) » 400 ifz> 0

2. F'(z) % —0ifz <0

3. F(z)=0ifz =0
Thus we know what happens to the orbits of all points under iteration of
F(!‘:) = Jde.

Exercise 1.5 Use orbit analysis to understand the behavior of all orbits of
each of the following functions:

a. F(z) =3z
b. F(z) = -3z
c. F(z)= -2
d. F(z)=2°
e. F(z) = —z?

This brings us to the basic question in dynamical systems: Can we predict
the fate of all orbits under iteration? Can we predict ahead of time what
will happen when we iterate a function?

For all of the systems we have discussed using the calculator, namely,

z , z2, and sinz, the answer has been yes. Here is one last example where
the fate of orbits can be decided, but the result is not so easy to predict
ahead of time. What happens when the cosine function is iterated? Let’s
see. Let C(z) = cosz and choose any input, say z = 18.84 in radians. Then

we find

C(18.84) = .999...
C?*(18.84) = .540...
C>(18.84) = .857...
C*(18.84) = .654...
C®(18.84) = .793...

C"(18.84) = .739085...
C'%(18.84) = .739085. ..
C'(18.84) = .739085... .

So the orbit of 18.84 is a sequence of numbers that tends to .739085. ..

Experiment 1.6 Use a calculator to compute the orbits of various points
under iteration of the cosine function.
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Outcome. Again, no matter which z is initially input into the calculator,
the result is the same: all orbits tend to .739085... Remember, you get a
different answer if you use degrees. We’ll see later why we always get this
strange result.

1.5 Fixed and Periodic Points

At this point you might begin to suspect that the only types of orbits in
a dynamical system are the fixed points and the orbits which tend to them
(or to infinity). However, this is far from the truth: There are many, many
different types of orbits in a typical dynamical system. Undoubtedly the
most important type of orbit is a fixed point. Recall that a point z is called
a fized point for F if F(zg9) = zo. Note that fixed points never move under
iteration: Since F(zg) = =9, it follows that F(F(zg)) = F(zo) = zo and, in
general, F™(zg) = zo. For example, as we saw in the previous sections, both
0 and 1 are fixed points for S(z) = /= and T(z) = z%. Similarly, 0 is a
fixed point for S(z) = sin z, while the point we found experimentally above,
.739085.. ., is fixed by cosine.

Another type of orbit is the periodic orbit, or cycle. An orbit is periodic
if it eventually returns to where it began. That is, the orbit of zg is periodic
if there is an integer N such that F¥(zg) = zo. The point zq is called a
periodic point of period N. The least such positive integer N is called the
prime period of the orbit.

As an example, consider the reciprocal function R(z) = 1/z. We may
input any z # 0 into this function. Note that z = 1 and z = —1 are both
fixed points for R, since R(1) = 1 and R(—1) = —1. However, any other
initial z generates a cycle of period 2. Indeed, if z # +1 and z # 0, we have

R(:)=%9’::

and

R}(z)=R(l/z)=1 =z

Hence z and R(z) lie on the same periodic orbit for R.
A similar pattern occurs for the function N(z) = —=z. Clearly, 0 is a
fixed point for N, but all other points lie on a cycle of period two.

Exercise 1.7 Consider F(z) = —z°. Can you find cycles of period 2 for F?
Consider also G(z) = (z + 1)[—%: + 1). Show that 0 is a periodic point for
G. What is its prime period? What is the orbit of 07
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Notice several important properties of periodic orbits. Suppose z¢ lies
on an orbit that is a cycle of period 4. We may write

z) = F(zy)
z3 = F(z;) = F*(zo)
Iy = F(::) = I‘ﬂ(zo)
zo = F(z3) = F*(zo)
since zo has period 4. The orbit of z¢ therefore repeats cyclically

L0, 21,22, T3, T0,T1,22,73,T0y+++

Also, what about the orbits of z;, z3, and z37 They too are cycles, since we
know, for example, that

z; = F(z;)
2y = Fz(zi)
Zo = F’(”l)
I = .F‘(:h)

That is, the orbit of z; also repeats over and over again:

T1:3T2, T3, T03 T, T2, 23,03 Ty~

As a consequence, each point on a cycle of period 4 for F will be fixed by F*
as well as by F®, F!2 and, in general, by F*" for any integer n. All these
multiples of 4 are called periods of the cycle. However, we reserve the term
prime period for 4, the least period of the cycle.

The importance of periodic orbits or cycles stems from the fact that
they represent cyclic or repeating phenomena in nature, such as the seasonal
fluctuations of the populations of certain animal or insect populations. In-
cidentally, there is nothing special about our choice of a cycle of period 4; a
cycle of any period has similar properties.

One final important type of orbit is the eventually fized or eventually
periodic orbit. These are points whose orbit is not fixed or periodic but for
which some later point on the orbit is fixed or periodic. For example, the
point z = —1 is eventually fixed for T(z) = z?. This is true since T(—1) # —1
(so —1 is not a fixed point), but T(—1) = 1, and 1 is a fixed point. Similarly,
the points z = 7, 27, 3« ... are all eventually fixed for S(z) = sin z, since 0
1s fixed by S, and

= S('l') = S(z‘l’) = 5(31') —_— aas
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Finally, the point 1 is eventually periodic for F(z) = z* —1 because F(1) =0
and 0 lies on a cycle of period 2.

Exercise 1.8 For each of the following functions, decide whether 0 is a fixed
point, lies on a cycle, or is eventually periodic.

a. F(z) = |z|

b. F(z) =1— z?

c. F(z)=(z—-1)

d. F(z)=—-3(z - 2)(3z +1)
e. F(z)=22-2

f. F(z) = wcosz

g F(z)=2—-2z -1

1.6 An Application from Ecology

It is not our aim in this book to present applications of dynamical systems
theory. Rather, we will content ourselves with presenting the mathematics,
which, as we will see, becomes quite interesting in its own right. But, for
the reader who insists on knowing why anyone would ever dream of iterating
a simple function, we provide here one elementary application that arises
in the study of population dynamics. We will see that this simple problem
motivates much of the mathematics that comes later.

For a population biologist or ecologist who studies the growth or decline
of the populations of different species of birds or fish or animals, an important
problem is the construction of good mathematical models that will allow him
or her to predict accurately the population in future generations or years.
Will the population become extinct? Will there be a population explosion?
Will the population fluctuate cyclically or behave totally unpredictably?

To answer these questions, the ecologist resorts to one of many mathe-
matical models that are designed to aid in predicting population growth or
decline. Most often, these models yield dynamical systems of one type or
another.

One of the simplest dynamical systems that arises in this way is the
logistic equation. This idealized model may be used to describe the behavior
of the population of a single species that lives, reproduces, and dies in a
controlled environment such as a laboratory without any unexpected external
influences. This species may be a colony of boll weevils or ants or Alaskan
snow frogs — the exact nature of the beast need not concern us here. Let’s
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suppose that the ecologist can count accurately the population of the species
during each generation. Then the question becomes what happens to the
population as the generations go on? Can the ecologist use his complete
knowledge of the present population to predict in advance the population
many generations from now?

To keep the numbers manageable, let’s keep track of only the percentage
of some limiting population that is alive during each generation. In any
environment, there is a maximum number of the species that can be present
at any one time. This limiting population is governed, for example, by the
physical size of the laboratory or colony in which the species is confined.
After all, there can be no more of the species alive than can physically fit
into the laboratory. We will take this number to be our maximum or limiting
population. Let’s call this number L.

The ecologist then denotes by P, the percentage of this limiting popu-
lation that is alive at generation n. So, for example, if P, = .5, then the
exact population is L/2 at generation n. Clearly, 0 < P, < 1. The logistic
equation allows the ecologist to compute the population at generation n + 1
from a knowledge of the population in the preceding generation, P,. The
equation 1s

P‘+1 =CPH(1_P‘)

Here c is an ecological constant that depends upon such things as the amount
of food available or the temperature of the lab. The constant ¢ is determined
once and for all by the ecologist. For reasons we will discuss later, ¢ is usually
chosen between 0 and 4. Using this equation, and given any initial population
Py, the ecologist may then predict the species’ population at any succeeding
generation. For example, if ¢ = 2.4 and the starting population is Py = .05,

then
P, = 2.4(.05)(1 — .05) = .114

P, = 2.4(.114)(1 — .114) = .2424096

and so forth. That is, given any Fy, we may compute
P, = cP(1 - F)
The result of this computation allows us to compute P;, P3, and so on:

P: = CP](] — P})
Py =cP(1-P)

Pp = cPay(1— Pa_y)
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Note that this process is simply the process of iterating the quadratic function
F(z) = cz(1 — z). Indeed, given P, we have

P, = F(P)
P, = F(P,) = F*(P)

P, = F(Pa_;) = F*(Py)

Therefore, the question asked by the ecologist is exactly the same as our
original question: Predicting the fate of the population is the same as pre-
diction of the fate of orbits generated by F(z) = cz(1 — z). These functions
are called the logistic functions.

A couple of remarks are in order. First, the logistic equation, as simple
as it is, is a reasonable first approximation to a mathematical model for
population growth. For example, if there is no species present (P = 0) or
if the lab is completely full (P, = 1), then there is no species present during
the ensuing generations. This is true, since we have F(0) = F(1) = 0.
Furthermore, if Py is small, the population tends to increase, whereas if P,
is large, the population tends to decrease, as we would expect. On the other
hand, it is highly unlikely that all the complexities of life and death can be
mirrored in as simple an equation as the logistic equation, so this equation
has to be taken with a grain of salt. Ecologists use much more sophisticated
mathematical tools to make actual predictions. Nevertheless, as we shall see,
this simple model leads to all kinds of unexpectedly complicated behavior.
Iteration of the logistic function turns out to be one of the richest and most
interesting examples of a dynamical system imaginable, and we return to it
often in succeeding chapters.

Further Exercises and Experiments

1. Use a scientific calculator to find the first five points on the orbit of zg
for each of the following functions.

a. F(z)=2>+1,20=0,1,2
b G(s) =38 — 1, 0= 1.0
c. Hz)=%5-1,20=3,2,-3

2. Use a scientific calculator to iterate each of the following functions. Some
of these iterations demand more than one keystroke to compute each
point on the orbit. Can you predict the fate of all orbits?
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E(z) =expz

S(z) = 1.5sinz

R(z)=1/z

T(z) = 1/z?

U(z) = 1/vz

A(z) = arctan z (inverse tangent of z)
g Qz) =2 -1

3. Use a scientific calculator to find as many fixed points and periodic cycles
as possible for each of the following functions.
a. Q(z) =22 -1
b. A(z) = 2arctanz
c. §(z) = —1.5sinz
d. L(z) =2~ .52
e

-0 R OP

. C(z) = cosz
4. Perform orbit analysis on each of the following functions.
a. L(z) = -3z
b. M(z) = -3z
c. N(z)=z+4
d. P(z) =4/z
e. Q(z) =2z -1
f. R(z)=z*
g S(z) = -=*
h. T(z) = —=*
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Chapter 2

Iteration Using the Computer

In this chapter we turn to the computer and computer graphics to help
us understand iteration of functions. As is apparent, most functions are
not represented by keys on a calculator and so iteration with a calculator
is not often feasible. For example, to iterate a simple function such as the
logistic function 2z(1 — z), we would have to “remember” the value of z
(or store it in memory) while 1 — z is being computed in order to compute
the product 2z(1 — z) subsequently. Such tasks are much easier to handle
with a computer or programmable calculator. One day, someone might mass
produce a calculator with a 2z(1 —z) button for some crazy reason, but until
that time, we must be content with programming the iterations ourselves.
Besides, there are many, many more interesting functions to iterate than can

ever be accommodated by the limited number of buttons on a calculator!

2.1 The Program ITERATE]

BASIC programs to iterate simple functions are not very difficult to
write. They involve only one simple loop, which iterates the given function
on a given initial input. For example, Figure 2.1 displays a BASIC program
called ITERATE]I to iterate the function 2z(1 —z) 25 times on a given initial
input zg9. The program prompts the user to enter a value for zp and then
prints out the next 25 points on the orbit of zg. Incidentally, note that this
function is one of the logistic functions we described in the last chapter,
where ¢ = 2.
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REM program ITERATE1
INPUT "x0%; x0
FOR i=1 TO 25
x1 = 2*x0%(1-x0)
PRINT i, x1
x0 = x1
NEXT i
END

Figure 2.1 The program ITERATE]I.

Note how simple this program is. We use only the INPUT, FOR-NEXT,
and PRINT statements from BASIC. When the program is run, the INPUT
statement prompts us to type in an initial seed z9. The computer then com-
putes and displays the next 25 points on the orbit of zg. This is accomplished
in the FOR-NEXT loop of the program. In this loop, we first compute the
value of the function

z; = 2z0(1 — zo)

Then we print both i, the iteration count, and z;. Finally, we replace z,
by zop and return to the beginning of the loop. Using this program, we can
compute the successive iterates of this logistic function easily; computers are
ideally suited for performing the routine task of iterating a function over and
over again. They also save your index finger from developing blisters caused
by computing long orbits on a calculator.

Remark. In ITERATE] and in later programs, we will often use X0 as one
of our variables. This is “X-zero,” not “X-oh,” as it is sometimes erroneously
read. Also, the program could be simplified a bit by using the replacement
statement

X0 =22 X0=(1— X0)

This statement combines the pair of statements

X1=2+X0=+(1- X0)
X0=X1

into one.
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Experiment 2.1 Use ITERATE] to compute the iterates of various starting
zo-values. What happens? Can you use the output of this program to decide
what happens to the orbit of any given starting z¢-value?

Outcome. The points zg = 0 and z¢ = .5 are fixed points. The point zg = 1
is taken onto 0 after one iteration, so 1 is eventually fixed. All other points
satisfying 0 < zg < 1 tend to .5 under iteration. When zg < 0 or zg > 1, the
situation is quite different: all orbits tend to —oo, as the reader will quickly
notice because of the overflow messages that fill up the screen. We will see
why all of this occurs in the next chapter when we discuss graphical analysis.

Project 2.2 Modify ITERATEI so that it prints the first 25 points on the
orbit of zg, this time including z¢. Also, modify ITERATEI so that it accepts
from the user a new maximum number of iterations, MAXITER, rather than
25. Use another INPUT statement.

In this book, we present all programs using BASIC programming lan-
guage. We urge readers who know other languages such as PASCAL or C
to rewrite the programs in these languages. In general, programs written in
these languages will run significantly faster. While speed is not an issue for a
simple program like ITERATE], it will become much more important later
when we write programs that may take hours or even days to run!

Note that it is very simple to modify ITERATE] so that the program
computes the orbits generated by other functions. For example, if we change
the fourth line of the program to read

X1=3=+X0+ SQR(X0)

or
X1 = SIN(X0) + COS(X0)

we will compute the orbits of the functions F(z) = 3z + /z or G(z) =
sin z + cos z, respectively. It is also easy to modify the number of points on
each orbit that are computed by changing the 25 in the third line to any
desired value.

Project 2.3 Modify ITERATE] so that the program computes the iterates
of each of the functions discussed in Chapter 1:

a. /z
b. z?

C. sinz
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d. cosz
Then use the computer to perform orbit analysis for each of these functions.

Clearly, ITERATE] is a versatile program: A simple change in the func-
tion definition allows us to experiment with completely different dynamical

systems.

Experiment 2.4 Use ITERATE] to help you perform orbit analysis on the
following.

a. F(z)=(w/2)sinz

b. F(z) =expz

c. F(z) = —cosz

d. F(z) = sin(z - 1)

2.2 The Logistic Function

We now begin one of the most fascinating subjects in all of dynamics: We
use ITERATE] to investigate the dynamics of the logistic function described
in Chapter 1. Recall that the logistic function is the quadratic function given

by
F(z) = cz(1 — z) = ¢(z — 2?)

Here, c is a constant, which is usually chosen between 0 and 4. In ecology, the
initial seed zg for the iteration is a percentage of some limiting population,
so z¢g is usually chosen between 0 and 1.

We urge you to undertake the following project and experiment because
much of our subsequent work and many of the major themes of this book
will make use of this project.

Project 2.5 Modify ITERATE] to compute the iterates of cz(1 — z) where
c is a positive constant. Your new program should accept the following as
input.

a. Any desired value of the constant ¢ (use an INPUT statement).

b. Any initial point z¢ (use another INPUT statement).

c. Any desired number of iterations, MAXITER (use a third INPUT

statement).

When you input the values of MAXITER and ¢, it is best to keep MAXITER
small, say between 100 and 200, and to keep ¢ between 0 and 5.
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Experiment 2.6 Now use this revised version of ITERATE] to catalogue
as many different dynamical phenomena as you can for the various logistic
functions. Specifically, use this program to compute the iterates of any zg
with 0 < zp < 1. Record what you find. Try the following c-values, at
the very least. If time permits, choose other intermediate c-values as well.
What do you observe? You should record the results of your observations
for comparison with the results of later experiments.

a. c=.9
b. ¢=.8
c. c=1]
d. c=195
e. c=2

f. e=3
g ¢=3.2
h. ¢=35
1. ¢=3.55
j. ¢=3.83
k. c=4

. ¢c=35

You should try other values of ¢ to help find a more complete picture of the
dynamics.

Outcome. The outcomes of these experiments vary with ¢. We have listed
the first 38 iterations of 0.5 for three c-values in Table 2.2. For a typical

value of zg with 0 < zg < 1, you should see the following behavior.
a. For ¢ = .5, all orbits tend to 0.
b. For ¢ = .8, all orbits tend to 0.

c. For ¢ = 1, all orbits tend to 0, but very slowly. You will have to
increase MAXITER substantially to see this.

d. For ¢ = 1.5, all orbits tend to 3.

e. For ¢ = 2, all orbits tend to 4} We observed this in our first experi-
ment in the last section.

f. For ¢ = 3, all orbits tend to -}, but very slowly. Moreover, these
orbits oscillate from one side of ; to the other as they approach -§

g. For ¢ = 3.2, all orbits approach the period 2 cycle .5130456... and
.799456.. . ..

h. For ¢ = 3.5, all orbits approach a period 4 cycle given by .38282...,
82694 ..., .50088..., and .87500....
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1. For ¢ = 3.55, all orbits approach a period 8 cycle.
j. For ¢ = 3.83, all orbits approach a period 3 cycle.

k. For ¢ = 4, there is no pattern whatsoever for a given zg. Some initial
zo's have very simple orbits, such as zg = % The orbit of z¢g = % 18

1

-l =2 0=20—=20—---

but the orbit of .501 is quite different: It never becomes fixed. Ta-
ble 2.3 displays a table of outcomes of this experiment for various
zg values when ¢ = 4. Each point on the orbit is listed up to only
three decimal places. Note that there is very little pattern to be
discerned. We should remark that the table of values that your com-
puter generates may not be the same as ours, at least after the first
few iterations. This is a consequence of the different ways that dif-
ferent computers round off numbers as well as the “chaotic” nature
of this iteration. We return to this point later.

l. For ¢ = 5, all orbits apparently tend to —oo. We say “apparently”
for, as we shall see, there are actually many orbits that do not behave
in this manner, although they are difficult to see on the computer.

As a consequence of this experiment, we see that even a very simple
dynamical system — as simple as a quadratic function — can exhibit fairly
complicated behavior. Moreover, the behavior changes as the constant ¢
changes. This constant is called a parameter. For each different parameter
value, we get a new function to iterate. Thus our experiment asked for the
behavior of a family of dynamical systems for different parameter values.

Remark. If you try other parameter values in the preceding experiment,
you will undoubtedly find many outcomes that are not listed. The more you
experiment with the logistic functions, the more complex the dynamics will
appear to become. It might even seem to be a hopeless task to understand
everything that occurs! But don’t be discouraged: After years of work,
mathematicians have succeeded in understanding the major features of the
dynamics of these functions only in the late 1970s. Even with the world’s
fastest computers at hand, understanding all that happens in the logistic
family is a formidable task!

Exercise 2.7 Use ITERATE] to find (at least approximately) the values of
the parameter ¢ for which all orbits of the function F(z) = cz(1 — z)
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Iterate ¢=1.5 c=J.2 e= 35
1 3715 0.8 875

2 3515625 512 3828125

3 341949462 7995392 826934814
4 337530041 512884056 500897694
5 335405268 . 799468803 874997179
6 .334362861 513018994 382819903
7 .333846507 799457618 826940887
8 333589525 513040431 H00883795
b 33346133 .T9945583 874997266
10 333397307 513043857 382819676
11 333365314 799455544 826940701
12 .333349322 513044405 500884222
13 333341327 .199455499 874997263
14 33333733 513044492 382819683
15 333335331 799455491 826940706
16 333334332 513044506 500884209
17 333333832 79945549 874997263
18 333333583 513044509 382819683
19 333333458 79945549 826940706
20 533333395 .513044509 50088421

21 333333364 79945549 874997263
22 333333348 513044509 382819683
23 333333341 .79945549 826940706
24 333333337 513044509 50088421

25 .333333335 .79945549 .BT74997263
26 333333334 513044509 .382819683
27 333333333 .79945549 826940706
28 333333333 513044509 00088421

29 333333333 .79945549 874997263
30 333333333 513044509 382819683
31 333333333 79945549 826940706
32 333333333 513044509 50088421

33 .333333333 79945549 874997263
34 333333333 513044509 JB82819683
35 333333333 79945549 826940706
36 333333333 513044509 50088421

37 .333333333 19945549 874997263
38 333333333 513044509 382819683

Table 2.2 The orbit of .5 for various ¢-values. This orbit is attracted to a fixed
point when ¢ = 1.5, to a cycle of period 2 when ¢ = 3.2, and to a
cycle of period 4 when ¢ = 3.5.
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a. Stop tending to 0 and begin tending to a different fixed point.

b. Stop tending to a fixed point and start tending to a period 2 cycle.

c. Stop tending to a period 2 cycle and start tending to a period 4 cycle.
Use only zp-values between 0 and 1.

To be honest, it is difficult to find the exact c-values numerically where
these changes occur. The study of where dynamical behavior changes as a
parameter is varied is called bifurcation theory, a subject to which we will
return quite often later in this book.

It may appear that the large number of different behaviors that we ob-
served in the previous experiment were due to the special quadratic nature of
the logistic function. This, however, is not true. Many, many different func-
tions exhibit the same dynamical patterns as parameters are varied. Try
the following experiments and see to what extent your results agree with
observations about the logistic function.

Experiment 2.8 Consider the family of functions S(z) = dsin(z), where
the parameter d > 0. Modify your program so that orbits of this family are
computed. For 0 < d < 4, can you find dynamical behavior for this family
that is similar to that of the logistic family? As in the previous experiment,
can you find d-values for which 0 attracts all orbits, for which there is a
period 2 cycle, for which there is a period 4 cycle, and so forth? It is best to
restrict the zg-values to 0 < z5 < 7 instead of 0 < zg9 < 1. Record the values
of d for which specific behavior is observed; they will be different from those
observed for the logistic function. However, the observed phenomena should
occur in the same order relative to these parameters.

Experiment 2.9 Consider the family of functions F(z) = d(z — z*) with
0 < d < 2.6. Can you find similar dynamical behavior as we observed before
for this family? Use initial zy-values that satisfy —1 < zg < 0. Again record
your observations.

2.3 Computer Graphics

As should be obvious by now, the computer is an indispensable tool for
studying dynamical systems. The speed with which the computer generates
orbits cannot be beat! But, somehow, the list of numbers that the program
ITERATE] prints is, aesthetically speaking, less than appealing. This goes
beyond mere aesthetics. If, for example, our dynamical system possesses a
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cycle of period 100, it will be very hard to uncover this information from a
listing of the orbit of a given z¢ value. Therefore, it is useful to seek another
means of displaying the orbits of a dynamical system. One of the most
effective ways of achieving this is by means of computer graphics. Instead of
listing all of the points or numbers in an orbit, we instead plot the points of
the orbit as they are computed on the computer screen. Just as “one picture
is worth a thousand words,” one graphics image can contain the same amount
of information as a list of 100,000 points on an orbit of a dynamical system.
Using graphics, we will be able to read the behavior of orbits quite easily.

To accomplish this, we need to be able to transfer information concerning
the orbit of a dynamical system to the graphics screen. The simplest way to
do this is to plot each point on the orbit in succession on the screen. This
is easier said than done on many computers, for it necessitates transferring
the information about orbits from the real line (where the dynamics are
occurring) to the screen. That means we must change our “coordinates”
from the place where the dynamics are occurring to the screen.

To do this, we must understand how the particular computer screen we
are using is configured. A computer screen consists of a rectangular array
of dots or pixels that we may color at will. Sometimes this means we may
choose one of many colors to light up the pixel; other times, for monochrome
displays, we will be able to choose only two colors, white and black. In any
case, we need to know how to address, or name, each pixel on the screen.
In this section, we will assume for illustration that the screen is a square
array of 300 by 300 pixels. Most screens are not of this size, so the programs
below will need to be modified to fit the appropriate screen. Usually, this is
no problem, and the modifications can be carried out easily.

Just as in the Cartesian plane, points on the screen are given two coor-
dinates, a horizontal and vertical coordinate. We will denote the horizontal
coordinate by m and the vertical coordinate by n, so each pixel has a name,
or address, of the form (m, n). In many but not all computers, the ver-
tical coordinates run in the reverse direction from those in the Cartesian
plane. This is true for the Apple Macintosh and IBM personal computers,
that is, the upper left hand corner is named (0, 0), whereas the bottom right
hand corner has coordinates (300, 300). The top horizontal line contains
pixels named (m, 0), and the rightmost vertical line contains pixels named
(300, n). So the vertical coordinate increases as you move down the screen,
while the horizontal coordinate increases as you move to the right. See Figure
2.4. You should check to see how your screen is configured.

Let’s now write a program that successively displays the first 200 points
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(0, 0)
nl (300, 150)
(0. 300) - (300, 300)

Figure 2.4 Screen coordinates.

of an orbit of the function F(z) = 4z(1 — z) along a horizontal line on the
screen. As usual, we will choose an initial input zg satisfying 0 < z¢o < 1.
It turns out that each of the 200 points on the orbit of zp also lies in the
interval between 0 and 1. For convenience, let’s plot these points along the
line on the screen whose vertical coordinate is 100. This means that points
on the z-axis between () and 1 will correspond to pixels on the screen with

label (m, 100), where 0 < m < 300.

Of course, m assumes only integer values, so not all the points on the
z-axis will correspond exactly to a pixel on the line. For the moment, let’s
overlook this difficulty and ask how can we make points on the z-axis with
0 < z <1 correspond to points on the horizontal line (m,100) with 0 < m <
300. The answer is given by the rule m = 300z. Toany z with0 < z < 1, we
associate the point (m,100) on the screen where m = 300z. Note that z = 0
corresponds to (0,100) under this association. This point is the leftmost
point on our horizontal line. Similarly, z = 1 corresponds to (300,100), the
rightmost point on the horizontal line. This procedure is called changing
coordinates.

How did we find the rule m = 300z?7 Here is where some algebra helps
out. We will always want our changes of coordinates to be as simple as

possible. “Simple” here means that we want the formula relating m and =z
to be of the form

m=az+b

where a and b are to be determined. But we know that m = 0 when z = 0,
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Figure 2.5 Changing coordinates.

so substituting this into the equation yields
0=0a+b

Therefore, b = 0. Similarly, we know that m = 300 when z = 1. Substituting
again, we find
300 =1a+0

or a = 300. Thus m = 300z is the correct change of coordinates.

Exercise 2.10 What change of coordinates would you use to convert the
following intervals of z-values to screen coordinates (m,100) where 0 < m <
3007

0<z<3

0<z<25

0<z<5

1<z<2

2<z<5H

1< z2<2

- o o TP

There is an easy way to visualize this change of coordinates. In Figure 2.5
we have drawn two lines of equal length. One line — the z-axis — consists
of points whose names run from 0 to 1. The other line — the m-axis —
contains points whose names run from 0 to 300. The vertical arrows running
from the z-axis to the m-axis give us the correspondence between points on
these lines. Clearly, the point z = *.l: corresponds to the midpoint on the
m-axis, namely, m = 150. Similarly, z = % corresponds to m = 100 and
P = % corresponds to m = 200.

Figure 2.6 displays a program called ITERATE2. The aim of this pro-

gram is to display the first 200 points on the orbit of zg under F(z) =
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REM program ITERATE2

INPUT "x"; x0

CLS

FOR i=1 TO 200
m = 300 * x0
PSET (m, 100)
x1=4"x0"(1-x0)
x0 = x1

NEXT i

END

Figure 2.6 The program ITERATE2.

4z(1 — z) where 0 < zg < 1. In the program, the actual plotting is accom-
plished by the two commands

M =300+ X0

PSET(M,100)

The first line simply changes coordinates from z-coordinates to screen coordi-
nates, while the second line tells the computer to light up the pixel (m, 100).
Recall that the number m is not usually an integer. The PSET command
overcomes this difficulty by rounding m to the nearest integer before plotting
the point. Thus we get only an approximation to the actual orbit when we
use ITERATE2; we cannot in general distinguish two points whose distance
apart is less than 1/300.

The statement CLS in the program simply clears the screen before we
begin plotting. This command and the PSET command may vary in other
dialects of BASIC. You should check your version of BASIC for the appro-
priate commands.

The main computation in the program takes place within the FOR-
NEXT loop via the statements

X1=4+X0+(1-X0)
X0=X1

These statements are familiar from our previous program, ITERATE]. Using
ITERATE2, we may now “visualize” the orbits of F(z) = 4z(1 — z), as in
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colors the same pixel white (or vice versa, depending upon your computer).
Therefore, the statements

PSET(M, 100)
FORJ=1TO 1000
NEXT J

PSET(M, 100), 30

when incorporated into ITERATE2, have the effect of lighting a pixel for a
moment, and then extinguishing it. The empty loop

FOR J =1 TO 1000
NEXT J

causes the computer to pause as it counts to 1000, thereby allowing the pixel
to remain lit for a moment or two, unless your computer is very slow, in
which case the pixel may remain lit for longer. You can change the value

1000 to achieve any desired effect.

Project 2.15 Incorporate these changes into ITERATE2 so that points
along the orbit are lit for a moment, and then extinguished. It might be
helpful to plot a small box rather than a point at each iteration. It also is
helpful to list below the axis some of the coordinates of points on the axis,
so that the relative positions of points on the orbit may be estimated.

The next modification of ITERATE2 is important. We use this version
of the program several times later in this book.

Project 2.16 For our later work, modify ITERATE2 so that it accepts

as input an initial value of zo together with the endpoints of an interval
£ < zg < r in which the orbit is plotted. Call this new program ITERATES.

The only difficulty encountered in this modification involves the trans-
formation from real coordinates to screen coordinates. Assuming that the
values of £ and r are given and that we wish to convert to screen coordinates

of the form (M,100) with 0 < M < 300, the necessary transformation is
M=300=+(z-£)/(r -2

Note that when z = ¢, M = 0 and when z = r, M = 300, as required.
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the following experiment. You should compare the graphical data generated
by this experiment to the table in Table 2.3 generated by ITERATEI.

Experiment 2.11 Use ITERATE2 to compute the orbits of various zq values
for F(z) = 4z(1 — z) when 0 < z < 1. What do you see?

Outcome. Some orbits are quite simple — for example, the orbits of 3,
%, or %, for which only finitely many pixels are lit. Others seem to wander
aimlessly about the interval, lighting up virtually every point in the interval.
This is our second encounter with chaotic dynamics, a topic we investigate
in detail later.

Exercise 2.12 Write a program similar to ITERATE2 that displays the
first 300 points on an orbit of S(z) = wsinz for an initial z¢ in the interval
0 < z¢9 < 7. Remember to use an appropriate change of coordinates.

ITERATE? has several defects. One is the fact that all points on the orbit
are displayed. Very often, we want to know only the eventual, or asymptotic,
behavior of an orbit, that is, what happens to very high iterations.

Project 2.13 Modify ITERATE2 so that the first 100 points on the orbit
are not displayed; only the last 100 points on the orbit are shown. Remember
that you still must compute all 200 points on the orbit.

Experiment 2.14 Use this project to reinvestigate the dynamics of the
logistic function ¢z(1 — z) for various c-values. Do you “see” the same results
that you found in Section 2.2 using ITERATE1?

A second defect of ITERATE?2 is the fact that, once a pixel is lit, it
is never extinguished. This makes it difficult to see the actual behavior of
orbits; for example, cycles appear as a finite set of points on the screen.
There are various ways to “erase” a pixel once it is lit. Here is one way to
do this. Just as the command

PSET(M,100)
colors a pixel black, the command

PSET(M, 100), 30
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Exercise 2.17 What is the formula for the change of coordinates that takes
the interval 2 < z < 4 to screen coordinates (M, 100) with 0 < M < 2507

Further Exercises and Experiments

1. Modify ITERATE] so that it computes the orbits of the following func-
tions. Can you describe the fate of all orbits?

Q(z) = z? — 1
Q(z) = 2% — 3
T(:’:) = I‘:"'
T(z) = —z3

A(z) = arctanz (ATN (x))
A(z) = 2arctanz

E(z) = 3expz

E(z) = —-3expz

R om0 B0 P

2. Redo Experiment 2.6, this time using negative c-values for the parameter
in the function F(z) = c¢z(1 — z). Record your observations.

3. Use ITERATE1 to compute the orbit of the given zg for a variety of
c-values in the specified range for each of the following functions. Do
you see any similarities among these different functions?

a. Q(z) = z? + ¢ for ¢ decreasing from .5 to 0; zo = 0
b. E(z) = cexp(z) for ¢ decreasing from .4 to .3; zog = 0
c. H(z) = z — z? 4 ¢ for ¢ increasing from —.2 to .2; z9 = .5
4. Use ITERATE] to compute the orbit of the given z¢ for a variety of

c-values in the specified range for each of the following functions. Do
you see any similarities among these different functions?

a. Q(z) = z? + ¢ for ¢ decreasing from 0 to —1; zg = 0
b. A(z) = carctan z for ¢ decreasing from —.5 to —1.5; zo = 1
c. E(z) = cexpz for ¢ decreasing from —2 to —3; z9 = 0
5. Write a program similar to ITERATE?2 that will display all points on an
orbit of Q(z) = z? — 2 in the interval -2 < z < 2.
6. Use ITERATES to display the orbit of the given z¢ for the following
functions over the specified intervals £ < zo < r.
a. Qz)=2-15,=-2,r=2;29=0
b. S(z)=nanz, l=—x,r=0;29g=1



CHAPTER 3 GRAPHICAL ANALYSIS 39

Chapter 3

Graphical Analysis

The goal of this section is to combine a mathematical procedure with our
previous experimental work to see why some of the dynamical behavior we
discovered before occurs. We call this technique graphical analysis. Using
only the graph of the function, we will be able to understand the behavior of
the iterates of the function. We will also be able to follow orbits and perform
orbit analysis geometrically, without resorting to computing the graphs of
the higher iterates.

3.1 The Graph of a Function

One of the best ways to understand what a function does is to use its
graph. The graph of a function is a concise picture of all of the values of the
function presented in an easy-to-read way.

To construct the graph of a function, let’s start with a given function F.
In the Cartesian plane (the zy-plane), the graph of F is simply the set of all
points of the form (z, F(z)). That is, for each allowable z, we record both
the input =z and the output F(z) in the single point (z, F(z)) in the plane.
For example, if F(z) = z, then the graph of F is simply the set of points
of the form (z,z) in the plane. That is, the graph of F is the set of points
whose z- and y-coordinates are the same. This, of course, is the straight line
that makes a 45° angle with both the z- and y-axes. See Figure 3.1.

To construct the graph of a function, we need to plot the points (z, F(z))
for all allowable z-values. This is a time-consuming task when done by hand,
but the computer makes the task much easier. Using the computer, we can
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J=a

0 x
Figure 3.1 The graph of F(z) = z.

tabulate a list of inputs and their corresponding outputs, and then plot each
point in the zy-plane. This gives a collection of dots in the plane which
approximates the graph of the function.

As an alternative, you may use one of the many good software packages
available to plot graphs on your computer screen quickly and easily. Using
some of the graphing techniques that we discuss later, you can even construct
your own graphing package, which is customized for your use. We will not
take the time at this juncture to explain how to do this.

There are many graphs that you should be able to recognize and plot
fairly quickly. Figure 3.2 gives several of them, including F(z) = /z, F(z) =
z?, F(z) = 4z(1 — z), and F(z) = z? - 2.

The graph of F' gives us lots of information about the first iterate of a
function, but to understand the dynamics of F, we need to know about F?,
F? | and so forth. Graphical analysis gives this information using only the
graph of F.

3.2 Using Graphical Analysis

To explain graphical analysis, let us return to our old friend §(z) = /z.
At first glance, it appears that we should need to know the graphs of not
only S(z), but also 5%(z), $°(z), and so forth in order to understand the
fate of all orbits. But this is not so: There is a simple geometric procedure
for describing the behavior of orbits using only the graph of S(z). Recall
that the graph of S(z) is given as in Figure 3.2a. To describe the orbit of a
point zg, we will first draw the diagonal line y = z, which makes a 45° angle
with the z- and y-axes (see Figure 3.1.) The next point on the orbit of zg
is the number S(zg). The graph of S allows us to read off this point, since
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(c) (d)

0 05 !
Figure 3.2 Some often-encountered graphs.

(20, S(zg)) is the point on the graph directly over zg. So if we draw a vertical
line from the point (zg,z¢) on the diagonal to the graph of S, the point of
intersection has y-coordinate S(zp). Next we note that a horizontal line
through this point intersects the y-axis at precisely 5(zp). We would prefer
to see this point on the same axis as zg9. To do this, we draw the horizontal
line through (zp,S5(z0)) to the diagonal instead. The point where this line
meets the diagonal is precisely (5(zg), S(z0)). Therefore, the number S(zo)
lies on the z-axis directly below this point. See Figure 3.3.

This gives us a procedure for finding the orbit of zg. If we start on the
diagonal at (zg,zg) and draw the vertical line to the graph at (zg, S(zg)), fol-
lowed by the horizontal line back to the diagonal, we end up at (S5(zg), S(z0))-
Now do this again. A vertical line to the graph from (S(zg), S(zo)) hits the
graph at (S(zp),S(S(z9)))- Then a horizontal line reaches the diagonal at
(5%(z0), S*(z0)). Thus the orbit of zq is appearing along the diagonal. A
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Jx X
Figure 3.3 Graphical analysis of S(z) = /z.

picture explains this most easily. See Figure 3.4, which exhibits the orbits of
two points under the square root function. Note that successive applications
of graphical analysis show that these orbits tend to 1, a fact that we deter-
mined experimentally in Chapter 1. Also note that the vertical line from
the diagonal to the graph may go up or down, depending upon the position
of the graph relative to the diagonal. Similarly, the horizontal line from the

graph back to the diagonal may go to the left or right. It is important to
remember to draw the vertical line to the graph first, then the horizontal

line back to the diagonal.

x /X AKX 1 /2 z
Figure 3.4 Two orbits of § given by graphical analysis.
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Graphical analysis enables us to discover many of the elementary dynam-
ical properties of a function. For example, Figure 3.5 illustrates graphical
analysis applied to the squaring function T(z) = z?. Note that the fixed
points 0 and 1 correspond to points of intersection of the graph of T with
the diagonal. All points zp with |zg| < 1 have orbits that tend to 0, while
points zg with |zg| > 1 have orbits that tend to infinity.

Figure 3.5 Graphical analysis of T(z) = z2.

In Chapter 1, we saw that all orbits of the cosine function tended to
the point .739085.... Graphical analysis explains why this happens. The
graph of C(z) = cosz is shown in Figure 3.6. Note that there is a unique
point of intersection of this graph with the diagonal y = z. This point
has z-coordinate .739085.. ., although it is impossible to solve for this value
exactly. Graphical analysis shows that all other orbits tend to this point. To
be effective, graphical analysis necessitates an accurate graph. You should
try your hand at a few simple examples.

Exercise 3.1 Using graphical analysis, describe the behavior of all orbits of
each of the following functions.

a. F(z) =22
b. F(z) =3z
c. F(z)=3-2=z
d. F(z) =23

We can sometimes find periodic cycles using graphical analysis. For
example, as we have seen in Chapter 1, the function F(z) = —z° has a cycle
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Figure 3.6 Graphical analysis of C(z) = cos z.

of period 2 given by 1 and —1, since F(1) = —1 and F(-1) = 1. This cycle
is represented by the box in Figure 3.7.

Figure 3.7 A cycle of period 2 for F(z) = —2°.

Exercise 3.2 Use graphical analysis to show that 0 and —1 lie on a cycle of
period 2 for the function F(z) = z? — 1.

Sometimes graphical analysis fails to predict the behavior of a function.
For example, Figure 3.8 illustrates graphical analysis of F(z) = 4z(1 — z).
Note the complexity of the orbit depicted, a fact we observed experimentally
in the last section. This example illustrates that long orbits are sometimes
difficult to trace with this method.
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1
Figure 3.8 Graphical analysis of F(z) = 4z(1 — z).
3.3 Attracting and Repelling Fixed Points

There is an important difference in the qualitative behavior near certain
fixed points that may be readily explained using graphical analysis. Consider
the two functions H(z) = 3z and G(z) = 2z. Both of these functions have
0 as a fixed point. But the dynamics near ( are different in each case.
For H, graphical analysis shows that all orbits tend to 0 under iteration: 0
attracts the orbits of all points. This, of course, can be readily verified using
a calculator or one of our programs. We therefore call 0 an attracting fixed
point for H. On the other hand, all nonzero orbits for G behave differently:
They move away from 0. In this case 0 is a repelling fixed point. See Figure
3.9.

To be more precise, suppose a function F has a fixed point p. The point
p is called attracting if there is an interval @ < z < b containing p in which
all points have orbits that tend to p. That is, if z satisfies a < z < b, then
F*(z) — p as n — oo. In plain English, this means that points which are
close enough to p (within the interval a < z < b) have orbits which tend to
p.

For example, 0 is an attracting fixed point for T'(z) = z?, since all points
in the interval —1 < z < 1 (excluding the end points) have orbits which tend
to 0.

Attracting fixed points are often easy to detect experimentally using
ITERATE?2; all we need do is find a point that lies in the interval a <z < b
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y=x

0 0

Figure 3.9 Graphical analysis of H(z) = 3z
and G(z) = 2=z.

and watch as its orbit tends to p. The only difficulty is locating the interval
a <z < bin the first place.

An important related concept is the basin of attraction of an attracting
fixed point. The basin of attraction consists of all points whose orbits tend
to a given attracting fixed point. For example, for T(z) = z?, the basin of
attraction of the attracting fixed point 0 is the interval —1 < z < 1. This
same interval is the basin of attraction of 0 for the function F(z) = z*, while
all real numbers lie in the basin of attraction of 0 for H(z) = 4z. Figure 3.10
shows how we may use graphical analysis to detect the basin of attraction of
an attracting fixed point.

(p.p)

Figure 3.10 The point p is an attracting fixed point.

Experiment 3.3 Find the attracting fixed point of P(z) = z — 3. What
is the basin of attraction of this fixed point? Use ITERATE2 to determine
experimentally both the fixed point and the interval of attraction, and then
calculate these values rigorously.
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Outcome. Recall that a fixed point of F satisfies the equation F(z) = z.
Hence the fixed points are given in this case by the equation

1
#:—§=#

or :
22 —z2—==0

2

This is a quadratic equation whose roots may be determined using the
quadratic formula, which yields two roots,

1-+/3 1++/3

T = > and z = >

Graphical analysis shows that (1— \/5) /2 is attracting and the corresponding
basin of attraction consists of all points z such that

-1-3 1+v3

<z <

2 2

See Figure 3.11.

Figure 3.11 Graphical analysis of P(z) = z* — 3.

Exercise 3.4 Determine both experimentally and via graphical analysis the
attracting fixed points and their basins of attraction for each of the following
functions:

a. T(z) = —2°

b. H(z) =2z(1 — z)
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c. J(z)=2.52z(1—-2)
d. K(z)=2"+ 3=
e. S(z) = %sin:

The second kind of fixed point is a repelling fixed point. These fixed
points have nearby orbits that behave in the exact opposite manner from
attracting fixed points; instead of tending toward the fixed point under iter-
ation, nearby points tend away from a repelling fixed point. To be precise,
suppose F has a fixed point at p. This point is called a repelling fixed point
if there is an interval a < z < b containing p which has the property that all
orbits (except p) leave the interval @ < z < b under iteration. That is, there
is an interval a < z < b with a < p < b such that, if z satisfiesa < z < b
and z # p, then F™*(z) does not lie in @ < z < b for some n.

This definition is somewhat technical, but a few examples clarify what it
says. For example, 1 is a repelling fixed point for T(z) = z?. We may choose
the interval 3 < z < 2 to see this. Clearly, all orbits except the fixed point
eventually leave this interval under iteration. Indeed, if% < z <1, then
T™(z) — 0 as n — oo, and so the orbit of z eventually leaves the interval
% < z < 2 and comes close to 0. Similarly, if 1 < z < 2, then T™(z) — o0 as
n — oo and, again, all of these orbits depart. There is nothing special about
the interval (3,2); we could have chosen any interval (¢,b) with 0 < a < 1
and b > 1 to verify that 1 is a repelling fixed point.

Graphical analysis allows us to determine easily whether or not a given
fixed point is repelling. Consider the function F whose graph is displayed in
Figure 3.12. The fixed point p in this case is a repelling fixed point, since

nearby orbits tend to move far away from p.

Exercise 3.5 Use graphical analysis to find all repelling fixed points for each
of the following functions.

a. T(z) = 2°

b. F(z) = 2z(1 — z)

c. V(z)=1-2=2

It is more difficult to find repelling fixed points using the computer than
it is to find attracting fixed points. For repelling fixed points, nearby orbits
move away from the fixed point rather than toward it. Hence nearby orbits
give us no clue that there is a fixed point in the vicinity. However, if we know
the location of a fixed point at the outset, then we may use ITERATE] or
ITERATE2 to check whether it is repelling.
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Figure 3.12 The point p is a repelling fixed point.

Figure 3.13 Graphical analysis of F(z) = z? + z — 4. Note that
both fixed points are repelling.

For example, consider the function F(z) = z? 4+ z — 4. This function has
two fixed points, at z = +2 and z = —2. Are these fixed points attracting
or repelling? Use the computer to check that, if you select an initial input
sufficiently near +2, then the orbit moves away. Can you find an appropriate
interval a < —2 < b from which all orbits (except the fixed point) eventually
leave? See Figure 3.13 for graphical analysis of this function.
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3.4 Stable and Unstable Orbits

There is a fundamental difference between attracting and repelling pe-
riodic points: Attracting periodic points can be “seen” using the computer,
whereas repelling periodic points cannot. We saw this when we tried to find
the fixed points of the function P(z) = z? — 3. There were two fixed points,

one attracting, given by
1-3

2

-

and one repelling, given by

o

1 +
2

If we use ITERATE] to try to find these fixed points, we see that the typical
behavior of orbits is to tend to the attracting fixed point or to tend to oo.
We would have to be very lucky indeed to guess the location of the repelling
fixed point.

This brings us to one of the principal themes of this book, the notions of
stability and instability. An orbit of a dynamical system is called stable if it
has the property that, if you change the initial input slightly, the resulting
orbit behaves similarly. For example, all nonzero orbits of the square root
function are stable because, as we have seen, they all tend to the attracting
fixed point at 1. Similarly, for C(z) = cosz, all orbits are again stable
because they all tend to the attracting fixed point at .739085 .. ..

For the squaring function T(z) = 2%, if |z| < 1, then T®(z) — 0. So
all orbits of points with |z| < 1 are stable. Similarly, if |z| > 1, then
|T™(z)] — oo, so again, all these orbits are stable. The only remaining
orbits are those of 1 (a repelling fixed point) and —1 (an eventually fixed
point). These orbits are unstable because nearby orbits have vastly different
behaviors: they tend to 0 or to co depending upon whether they are less
than or greater than 1 in absolute value.

Notice that an attracting fixed or periodic point is always stable, whereas
a repelling point is never stable (nearby initial conditions tend far away). It
is also true that any point in the basin of attraction of an attracting fixed or
periodic point is stable.

z

Exercise 3.6 For each of the following functions, determine which of the
orbits are stable and which are unstable.
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a. F(z)=2z+1

b. G(z) =3z -3
c. H(z) =23
d. J(z) = =*

Experiment 3.7 Use ITERATE] to determine whether the orbit of the
given zg is stable for the following functions:

a. 2o =0, S(z) =2sinz

b. 2o =0, S(z) = —2sinz
c. 2o =3, Q(z) =4z(1-=2)
d. zu=0, J(:)=31—3

e. z0=1, Q(z) =3z(1 - =)
f. 290=0, Q(z) =2z(1 - 2)

Outcome. All but one are unstable!

3.5 Attracting and Repelling Periodic Points

Like fixed points, periodic orbits may also be either attracting or re-
pelling. For example, consider the function F(z) = —z*. The points 1 and
—1 lie on a cycle of period 2. This cycle is a repelling periodic orbit. You
may see this in a number of ways. Using the computer and ITERATE] or
ITERATE2, you may easily check that if |z| > 1, then |[F*(z)| — oco. On
the other hand, if |z| < 1, then |F™(z)| — 0. Hence any point near +1 has
an orbit which tends far away.

Another way to see this is to use graphical analysis. This is shown in
Figure 3.14. Note that all orbits of points with |z| # 1 behave in the manner
just described.

Finally, we may also deduce that this cycle is repelling by working with
F%(z). We have

F¥(z) = F(-2’) = —(-2°)’ =2°
The graph of F?(z) is shown in Figure 3.15. Note that both 1 and —1 are

fixed points for F?, and they are both clearly repelling. Since neither are
fixed points for F', they must therefore lie on a cycle of period 2.

Exercise 3.8 The points z = 0 and z = —1 lie on a cycle of period 2 for
F(z) = 2% — 1. Is this cycle attracting or repelling? Use ITERATEI1 or
ITERATE?2 to decide.
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Figure 3.14 Graphical analysis of F(z) = —z°.

Figure 3.15 Graphical analysis of F?(z) = z°.
3.6 Higher Iterates

Another application of graphical analysis allows us to produce a rough
sketch of the graph of F™ from a knowledge of the graph of F. Given zy,
graphical analysis gives us a quick method of finding (at least approximately)
the point (F™(zg), F™(zo)) on the diagonal. So this gives us the y-coordinate
of the point on the graph of F™ over zp. If we apply graphical analysis to a
sufficient number of points, we can generate a rough sketch of the graph of
F™

Let’s apply this technique to sketch the graph of some of the iterates of
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ao,ao':z(%,%<:<bo,andbo{:dlthatmtakcnto%byf”.
Hence F? takes each of these points to 1, whereas F' takes the endpoints of
the four intervals to 0. So the graph of F* has four humps — one in each of
these intervals. See Figure 3.17.

Continuing in this fashion, we see that the graph of F™ has 2"~! humps
between 0 and 1. Each of these humps extends fromy=0toy =1,s0,as a
consequence, the graph of F™ crosses the diagonal at least 2™ times. This is
an important fact; it means that F™ has at least 2" fixed points. Not all of
these points are periodic with prime period n; for example, both 0 and % are
fixed points for F' (and so fixed also for F™*). But many of these points do
have prime period n. This shows that a simple function like F(z) = 4z(1—=z)
may have many, many periodic points with many different periods.

The importance of this observation is the following. Suppose we were
to try to find out how many points are left fixed by F* by other means.
Graphical analysis says that there are at least 2* = 16 of them. (In fact,
there are exactly 16 such points: 2 fixed points, a cycle of period 2, and 3
cycles of period 4.) One possible way to find these points would be to try to
solve the equation

Fl(z)==

algebraically. We challenge you to attempt this! This equation is a polyno-
mial equation of degree 16. Write this out and check it for yourself. Two
roots are easy to find, the fixed points z = 0 and z = % But the other 14
roots are far from obvious. In fact, it can be proved that there is no general
method to solve polynomial equations of degree greater than 4, so efforts in
this direction are usually fruitless. Yet notice how quickly and effortlessly
graphical analysis yields the existence of these cycles.

Lest you think that any polynomial equation of degree 16 always has 16
real roots, we remind you that T(z) = z? has only 2 fixed points and no
other periodic points at all. The equation for period 4 cycles in this case is
again a polynomial of degree 16, namely, z!®* = z, but there are only two
real solutions to this equation.

Another possible approach to finding periodic cycles for F(z) = 4z(1-z)
would be to use the computer and one of our earlier programs. At this point
it is useful to recall some of the experiments from Chapter 2 in which we
computed various orbits of F(z) = 4z(1 — z). When performing these ex-
periments, did you find any periodic points besides the two fixed points?
Probably not. It is extremely difficult to find periodic points for this func-
tion using the computer because these orbits are unstable and are therefore
usually invisible to the computer.
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0 12 1
Figure 3.16. The graph of F(z) =4z(1 —z)for0 <z < 1.

0 172 1 0 172 1
Figure 3.17. The graphs of F?(z) and F3(z).

F(z) = 4z(1 — z) for 0 < z < 1. The graph of F is shown in Figure 3.16.
Note that F(3) = 1 and F(0) = F(1) = 0. The graph shows that F takes
the intervals 0 < z < g md%ﬂz < 1 onto the interval 0 < z < 1. This
means that there are points agin 0 < z < 4} and by in % < z <1 that satisfy
F(ag) = F(by) = 1. Hence F%(ag) = F?%(b) = F(%) 1. On the other
hand, F? takueuhmdpomtnfﬂ<=<1md1 <z <1 to 0. This means
that the graph of F? has two humps in thc mterva.l 0 <z <1. See Figure
3.17.

Arguing similarly, there are points in each of the four intervals 0 < z <
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. Write a BASIC program that performs graphical analysis on a function.

Your program should accept as input an zg-value and then plot the ver-
tical and horizontal lines of 20 successive iterates of zg.

. Use graphical analysis to decide for which values of ¢ the logistic function

cz(1 — z) has an attracting or a repelling fixed point at 0.

. Use graphical analysis to sketch the graphs of Q%(z) and Q3(z) for -2 <

z < 2, where Q(z) = z? — 2.

. Use graphical analysis to sketch the graphs of $%(z) and §%(z) for 0 <

z < w, where S(z) = wsinz. What can you say about the number of
fixed points that S™ has?

Consider the function

_J2z if0<z<i
D(’)'{z-zz ifl<z<1

Sketch the graph of D, D? and D?® for 0 < z < 1. What can you say
about the number of fixed points of D*?

Consider the function

2z if0<z<3
B(’)'{zz-l ifl<z<1

Sketch the graphs of B, B?, and B®. How many fixed points does B
have? Can you find the periodic points of period 2 and 3 explicitly? How
about the period n points? (This is challenging!)
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Further Exercises and Experiments

1. Use graphical analysis to describe the behavior of all orbits of the follow-
ing functions:

a. F(z)=2z+1
b. F(z) = —z +2
c. F(z)==z*

d. F(z)=2*+ %
e. F(z)=z+2°
f. F(z)=z—2°
E- F(=)=:+=:

2. Find all fixed points for each of the following functions and determine
whether they are attracting or repelling.

a. F(z)=2*-1%
b. F(z)=2*-1

c. F(z)=2z%-2
d. F(z) = 4z°

e. F(z)=1/z?
f F(z)=1/z

Find each fixed point explicitly, and then use ITERATE] or ITERATE2
to determine whether this point is attracting or repelling. Use graphical
analysis to explain these results.

3. There are certain fixed points that are neither attracting or repelling.
These fixed points are called neutral. Find all neutral fixed points for
each of the following functions

a F(z)=1=2

b F(z)=—-z+3

¢c F(z) =z +2?

d F(z)=1/z

e F(z) =2+

4. Find all fixed points and periodic points of period 2 for F(z) = z? — 1.

Determine whether these orbits are attracting or repelling using both the
computer and graphical analysis.



CHAPTER 4 THE QUADRATIC FAMILY 57

Chapter 4

The Quadratic Family

In this section we will investigate the dynamics of the family of quadratic
functions Q.(z) = z? + ¢, where ¢ is a parameter. We investigate this family
for many different values of ¢; that’s why we use the subscript. Like our friend
the logistic function, this family represents one of the simplest nonlinear (i.e.,
not of the form az + b) functions, yet we will see that the dynamics of this
family are extremely complicated. We will return to this family again and
again in this book, particularly when we study Julia sets and the Mandelbrot
set.

4.1 Escaping Orbits of the Quadratic Function

Our first goal is to use a combination of graphical analysis and computer
experimentation to understand how the dynamics of Q.(z) = z? + ¢ change
as we vary the parameter c. Toward that end, we first attempt to determine
the c-values for which Q. has interesting dynamics.

Experiment 4.1 Use ITERATEI to determine the set of zg-values whose
orbits do not escape to infinity for each c.

Outcome. When ¢ > %, it appears that all orbits of Q. tend to infinity.
When -2< ¢ < %, there appears to be an interval of zg-values that do not

escape. And when ¢ < —2, it again appears that all orbits escape (we will
see later that this last observation is far from the truth).
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Let’s use graphical analysis to understand the results of this experiment.
The graph of Q. is a parabola, which opens up as depicted in Figure 4.1. Note
that this graph assumes three different positions relative to the diagonal,
depending on whether ¢ > i, c=40re< } When ¢ > }, the graph lies
above the diagonal; when ¢ = }, the graph just touches the diagonal; and
when ¢ < -}, the graph meets the diagonal in two distinct points.

T? 3 T3

1.y 1

(b) (c)
Figure 4.1 The graphs of Q.(z) =z? + ¢
for (a) c> 4,(b) c =4, and (c) e < 4.

These facts are easy to verify analytically. The graph of Q. meets y = 2
whenever
" +c=2

or

22—24+¢=0

The roots of this quadratic equation are the z-values of points of intersection
of the graph of . and the diagonal. Using the quadratic formula, these
points are easily determined to be

1+ +/1—4c

pm—

. 1 —+v1—4c¢
B 2

Note that p and ¢ both depend on ¢, so we really should write p(c) and ¢(c¢)
to indicate this dependence.

These numbers are real provided

1—-4c>0
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Thus we see that there are points of intersection only when ¢ < -} Note that
p = q when ¢ = { and that ¢ < p when ¢ < . These facts allow us to verify
what we observed experimentally when ¢ > i

Exercise 4.2 Use graphical analysis to show that all orbits of Q. tend to
infinity when ¢ > 4.

Dynamically speaking, ¢ and p are both fixed points for .. Hence we see
that a pair of fixed points are “born” as the parameter ¢ decreases through %
This is an example of a bifurcation. Bifurcation means a change, a splitting
apart or a division in two. In this example, we see that a fixed point for Q.
first appears when ¢ = } and then suddenly splits into two fixed points as ¢
decreases. This is an example of what is known as a saddle-node, or tangent,
bifurcation. We will see many other examples of this kind of bifurcation as
we go along.

Where does the interval of zg-values whose orbits do not escape when
-2<c< -} come from? Again graphical analysis yields the answer. Note
first that —p < g<pforallc < % To see why this is true, we first note that

—v1—4c < V1 —-4c
Hence
1—vV1—4c<1++vV1—-4c
and also

-1=-vV1-4c<1-vV1-4c
Putting these two inequalities together yields

—1—-v1—-4c<l—-—V1—-4c<1++V1—-4c

as long as 1 — 4¢c > 0. If we divide each term in this inequality by 2, we get
the desired result. Also note that —p is an eventually fixed point, because
Q:(—p) = p, which is a fixed point.

Exercise 4.3 Use graphical analysis to show that if z9 > p or z¢9 < —p, then
the orbit of zp tends to infinity.

This exercise suggests that all the “interesting” dynamics of (. are con-

fined to the interval —p < z < p when ¢ < % We will denote this interval
by I.; note that the size of I. depends on ¢ since p does.
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(a) (b)

Figure 4.2 The graphs of Q. for (2a)—2 < ¢ < 4, (b)c = —2, and (¢) ¢ < —-2.

Figure 4.2 depicts the graph of Q. in three cases: -2 < ¢ < %, ¢ =
—2, ¢ < —2. In each case we have drawn a box centered at the origin
with vertices at (p,p) and (—p, —p). The portion of the graph of Q. that
is contained within this box is precisely the graph of Q. on the interval I..
Note that the lowest point on the graph of Q. protrudes through the bottom
of the box when ¢ < —2. This is easily checked, since the lowest point on

the graph is (0,c) whereas the bottom of the box is given by

-1 -1 —4c

2
This y-value is just —p. Hence the lowest point on the graph protrudes

y_



CHAPTER 4 THE QUADRATIC FAMILY 61
through the bottom of the box provided

i ] =l
2

c <

We may solve this inequality (subject to the requirement ¢ < -}) as follows.

We have
2c+1 < —v/1—4¢

The right hand side of this inequality is negative. Thus we must certainly
have 2¢ + 1 < 0, so that, in particular, ¢ < —3. Taking absolute values of
both sides yields

-2c=1=|2¢+1|> V1 —-4c
since 2¢ + 1 is a negative number. Squaring both sides then gives

4 +4c+1>1—4e¢

4¢* +8¢>0
de(c+2)>0

This last product is positive if ¢ < —2 or if ¢ > 0. Thus, using the restriction
that ¢ < -%, we see that the lowest point on the graph of Q.(z) = z? + ¢
does indeed protrude from the bottom of the box when ¢ < —2.

Let’s summarize what we have accomplished so far. We have found that
all the interesting dynamics of Q. occur when ¢ < % Moreover, for each such
¢, the interesting dynamics occur on the interval I. given by —p <z < p

where
14+ +/1 —ﬁ
- 2

P

4.2 The Interesting Orbits

Now we turn to a discussion of the orbits that do not tend to infinity, the
most interesting orbits of the system. The importance of the box in Figure
4.2 is that it traps all the orbits of Q. within I, when —2 < ¢ < i All the
vertical and horizontal lines associated with graphical analysis remain within
this box for these parameter values. See Figure 4.3. This means that if our
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Figure 4.3 Orbits trapped in I, for -2 < ¢ < 1.

initial seed z¢ is any point in I, then the entire orbit of zg is trapped forever
in I.. That is, all the interesting orbits of Q. in this case lie in I..

When ¢ < —2, there are points in I, (such as 0) whose orbits escape from
I. and then tend to infinity. But there are many other points whose orbits
remain in I.. We return to this case later when we describe Cantor sets.
For the remainder of this section, however, we deal with the dynamics of Q.
when —2 < ¢ < ;. To understand the dynamics of this function, let us begin
with some numerical experiments.

Experiment 4.4 Modify ITERATE3 and/or ITERATEI so that the new
program does the following:
1. Accepts as input an initial seed zg and a parameter value c¢. You
should choose zg between —p and p; zg = 0 is always a good choice.
2. Displays the first 100 iterates of z9 under Q. in the interval —p <
z < p.
Note that your program must compute the value of p that depends on ¢ via
the relation

14+ +/1—4c
2

Use this modified program to observe the orbits of Q. for a large number of
c-values in the range —2 < ¢ < } Record your observations.

p._.

Outcome. There are a variety of different behaviors depending on ¢, much
the same as we observed in our experiment in Chapter 2 with the logistic

function F(z) = cz(1—z). For —3 < ¢ < £, all orbits appear to be attracted
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to an attracting fixed point. For -% < e < —%, most orbits appear to

be attracted to a period 2 cycle. As ¢ decreases further, most orbits are
attracted to a period 4 cycle, then a period 8 cycle, then a period 16 cycle,
and so forth. There are many ¢-values for which no pattern may be discerned.
Can you find c-values for which 0 is attracted to a cycle of period 37

4.3 The Period-Doubling Bifurcation

Let’s use graphical analysis to explain some of this behavior. We already
know that all orbits tend to infinity when ¢ > '} When —% <e< %, all
orbits appear to tend toward an attracting fixed point. This is the point

1—-+v1—4¢

- 2

that we computed previously. This graphical analysis is depicted in Figure
4.4. You might also check this numerically using ITERATE] or ITERATES.
In this case ¢ is an attracting fixed point and the interval —p < z < pisits
basin of attraction.

Figure 4.4 Graphical analysis of Q _ }

When ¢ = -%, another type of bifurcation occurs. This bifurcation
is called a period-doubling bifurcation. According to the outcome of our
preceding experiment, all orbits of points in I, are attracted to a single fixed

point when —§ < ¢ < ;. (When c is close to —2 or to %, it takes a long
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time for orbits to “reach” the fixed point.) When ¢ passes through —3, this
suddenly changes and all orbits of points in I. appear to be attracted to a
cycle of period 2. When c is very close to —%, this cycle contains two points
that are very nearly the same, but they spread apart as ¢ decreases. You
should experiment with a variety of c-values to observe this behavior.

Thus it appears that as ¢ decreases through — %, the attracting fixed point
g disappears and a new attracting cycle of period 2 is born. Actually, ¢ has
not disappeared, as we know from our previous computation of ¢; we have
seen that ¢ is a fixed point for all values of ¢ < i All that has happened is
that ¢ has changed from an attracting to a repelling fixed point. Meanwhile,
at the same time, a period 2 attracting cycle is born.

All of this can be explained by graphical analysis. Figure 4.5 displays
portions of the graphs of Q. for ¢-values near -i-, while Figure 4.7 displays
the graphs of Q? for the same c-values. In Figure 4.5 we have also drawn a
line that is perpendicular to the diagonal at (g,g). When ¢ = —:, the graph
of Q. is tangent to this perpendicular line. As ¢ passes through this value,
the graph twists from one side of this perpendicular line to the other.

What does this mean dynamically? Figure 4.5 shows that when ¢ > —-%,
g is attracting, but when ¢ < —-i. g becomes repelling. Note that points on
nearby orbits oscillate from one side of g to the other. When ¢ < —i, points
near ¢ move further away under Q2. However, points that are far away from
g tend to move closer under Q2, as depicted in Figure 4.6. This means that
somewhere in between there must be a point that moves neither farther away
from nor closer to g, that is, a point fixed by Q2. So somewhere in between
there must be a cycle of period 2.

This is most easily seen by looking at the entire graph of Q2, which is
depicted in Figure 4.7. Note the birth of two new fixed points for Q? as ¢
decreases through —%. Graphical analysis shows that these are attracting
fixed points for Q2. Since they are not fixed by Q., they must lie on an
attracting cycle of period 2.

This is a typical period-doubling bifurcation. As a parameter varies, a
given periodic orbit changes from attracting to repelling. Meanwhile, a new
cycle of twice its period appears.

We can verify all of this analytically. The period 2 points are solutions
to the equation

Qcz)==
Working this out, we find

z* +2z2 —z++¢=0
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(9.9

(b)

(c)

Figure 4.5 Portions of the graphs of Q.
for (a) ¢ = —.65, (b) ¢ = —.75, and (c) ¢ = —.85.

Figure 4.6 A cycle of period 2 for Q. for ¢ = —.8.

This is a fourth degree polynomial whose roots give the periodic points with
period 2. Generally, such equations are difficult to solve, but here we already
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Figure 4.7 The graphs of Q? for c-values near —3.
The points p; and p; lie on a cycle of period 2.

know two roots. Indeed, both p and g are fixed points, so they certainly solve
this equation. This means that (z — p) and (z — g) are factors of the left
hand side of this equation. But remember, both p and ¢ are roots of the
quadratic equation

2 —z4+¢=0

(see Section 4.1). So we may divide the fourth degree polynomial by this
quadratic factor. This leaves us with a quadratic polynomial, whose roots
are easily generated by the quadratic formula. We leave it to you to verify
that this quadratic equation is given by

22 4+z4e4+1=0

That is
28 + 222 -2+ + ¢

z2 -z +c¢

This quadratic equation has real roots when ¢ < —i. The algebra here is
complicated (remember, all the coefficients depend on ¢) so we leave the
tedious details for you to work out. This is not exactly fun, but you can do
it!

=z 4+z4+c+1

Experiment 4.5 Use ITERATE] or ITERATES to investigate the period—
doubling bifurcation that occurs in the logistic family cz(1 — z) when ¢ = 3.
Can you find experimentally c-values for which similar bifurcations occur in
the following functions?
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a. F(z)=2z>—cz
b. E(z) = —cexpz
c. S(z) =dsinz

Outcome. You should use the graphs of these functions to help you find
approximate c-values first, and then experiment.

Our earlier experiments showed that, as ¢ decreases through —2, most
orbits begin to be attracted to a period 4 cycle. How does this occur? Let’s
use graphical analysis again, this time applied to Q2. Figure 4.8 shows the
graph of Q? for various c-values. We have drawn a small box in each figure.
Compare the portions of the graph of Q? with those of Q. in Figure 4.2. Note
the similarity. If we think exactly as we did before about what is happening
dynamically inside this box, we expect Q? to undergo a period-doubling
bifurcation, just as Q. did before. That is, at ¢ = —E, we expect the period
2 cycle to undergo a period-doubling bifurcation. At this c-value, a new
cycle of period 4 is born, while the period 2 cycle becomes repelling.

This scenario continues as ¢ decreases. The period 4 cycle eventually
undergoes a period—doubling bifurcation, spawning a new attracting cycle of
period 8, which then doubles and gives an orbit of period 16, and so forth.
At each stage a cycle of period 2" becomes repelling as an attracting cycle
of period 2**! is born. Unfortunately, it is very hard to distinguish these
orbits when n gets larger than 4.

This is called the period-doubling route to chaos, a phenomenon that has
only recently been shown to occur in a great many dynamical systems.

Exercise 4.6 Use ITERATEI] or ITERATES to find experimentally the first
few period-doubling bifurcations in the following families of functions.

a. S(z)=dsinz,0<z<~

b. F(z)=cz(1-2),0<z<1whenc<0

c. F(z)=2%—cz,-2<z<2

Exercise 4.7 Consider the family of cubic functions given by T.(z) = z°—cz,
where the parameter ¢ satisfies 0 < ¢ < 3. What are the fixed points for 7.7
Are they attracting or repelling? Use ITERATEI1 or ITERATES to help you
decide. Show that +4/c — 1 lies on a cycle of period 2 when ¢ > 1. Hence
a period-doubling bifurcation occurs when ¢ = 1. Explain this using the
graphs of T, and T? for various c-values.
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(a) (b)

(c)

Figure 4.8 Compare the portions of the graphs of Q. inside
the box to the graphs of Q. in Figure 4.2.

4.4 The Chaotic Quadratic Function

Now let’s turn our attention to another c-value with quite different dy-
namics, namely, ¢ = —2. This is precisely the point at which our experiments
showed a dramatic change in the dynamics of Q.. For ¢ = —2, it appears
that a “typical” orbit fills up the interval -2 < z < 2 (recall that p = 2
when ¢ = —2). We saw this in Problem 4 at the end of Chapter 2. This
will be one of our principal examples when we discuss the concept of chaos
later. Other periodic points seem hard to find (except for the repelling fixed
point p = 2). We ask if there are any other cycles for Q_3. The surprising
answer is that there are infinitely many. The reason for this is exactly the
same as for 4z(1 — z) in the previous chapter. We may understand this by
using graphical analysis.
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(a)
Figure 4.9 The graphs of Q?, and Q3 ,.

Let’s first draw the graphs of Q_3 and its iterates in the box centered at
(0,0) with vertices at (—2, —2) and (2,2). This is easily done using a graphing
program or graphical analysis. Note that the graph of Q_3 = z? — 2 passes
through the points (—2,2) and (2,2). The graph is a parabola whose vertex
is located at (0,—2). Also note that Q_3(v/2) = 0 and Q_3(—v2) = 0.
Therefore, Q% ,(£v/2) = —2. Using graphical analysis, it follows that the
graph of Q?, has 2 “valleys,” as depicted in Figure 4.9. Arguing similarly,
Q3 , has four valleys, Q*, has eight valleys, and so on. Q™, has 2"~! valleys
in this box. Consequently, the graph of Q% , crosses the diagonal 2" times in
the interval —2 < z < 2. This means that Q" , has at least 2" fixed points in
this interval. Not all these points are fixed by Q_2; most have prime period
n. In any event, we have shown that, by the time ¢ has decreased from % to
—2, this quadratic family has developed infinitely many periodic points.

Notice the similarity between Q_2 and what we found in the last chap-
ter for the function 4z(1 — z). The next section will show that there is a
strong resemblance between all the members of the quadratic and the logistic
families.

You should appreciate the power of this qualitative or geometric method.
As we noted before, to find these points algebraically, we would need to solve
the equation

2(z)—z=0

This is a polynomial equation of degree 2* whose roots we must find. If n is
large, this is an impossible task. We have also seen that the computer does
not help much either.
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4.5 The Orbit Diagram

To summarize, we have seen that, as ¢ decreases, the number of periodic
points of Q. increases and there are c-values with complicated orbit structure.
Our next project allows us to put all this information together. We will
construct the orbit diagram for Q.. This is a diagram that plots the orbit of
a particular point versus the parameter value ¢. We will choose 360 equally
spaced values of ¢ between i and —2. We will then compute the orbit of 0 for
each of these c-values and display each of these orbits on a different vertical
line. The horizontal direction will represent the parameter ¢. So that we
only see the ultimate behavior of the orbit of 0, we will not plot the first 50
iterates of the orbit. We will only plot the subsequent points on the orbit.

REM program ORBITDGM
FOR ¢c=-2 TO 0.25 STEP 0.00625

X=0
m= 160 * (c + 2)

FOR I=0 TO 200
X=X"X+C

IF <50 GOTO 11
nN= 75"(2-x)
PSET (m,n)

11 NEXT i

NEXT c
END

Figure 4.10 The program ORBITDGM.

Figure 4.10 gives a program called ORBITDGM, which produces the
orbit diagram. The program steps through 360 different values of ¢ between

.25 and —2 via the statement

FOR ¢= -2 TO .25 STEP .00625

Since 2.25/360 = .00625, this FOR-NEXT statement selects 360 equally
spaced c-values between .25 and —2, and then performs the necessary calcu-
lations for each ¢. The first 200 points on the orbit of 0 are calculated for
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c=-2 -0.75 0.25

Figure 4.11 The output of ORBITDGM.

each ¢, but only the last 150 points are plotted. This allows us to see the
eventual, or asymptotic, behavior of the orbit and is accomplished via the IF
statement in the program.

Note that this program contains a nested loop. For each c-value, we first
compute and then plot the orbit of 0 under Q., and then we increment c.

The output of this program is shown in Figure 4.11. Note that c increases
from —2 to .25 as we move from left to right. This picture warrants some
explanation. Remember that vertical lines contain the dynamics of a par-
ticular Q.. Since only the last 150 points on the orbit of 0 are plotted, this
means that when a small number of points appear on a given vertical line,
we can assume that 0 has been attracted to an attracting cycle. With this
in mind, we see clearly the period doublings from a fixed point to a cycle of
period 2 to a cycle of period 4 and beyond. There is also a period 3 window,
where 0 is attracted to an attracting cycle of period 3, and there are other
c-values for which the orbit of 0 appears to be quite intricate. These c-values
form the “chaotic regime,” where orbits seem to move about randomly rather
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c=-1.65 -0.75

Figure 4.12 A magnification of the orbit diagram of Q..

than settling down to a fixed point or a periodic orbit. The fine structure in
these areas is difficult to see at this resolution, so it is useful to magnify this
picture as in the next projects.

Experiment 4.8 Modify ORBITDGM so that the program computes the
orbit diagram for Q. in the period-doubling regime, that is, for —1.65 < ¢ <
—~.75. This orbit diagram is displayed in Figure 4.12. Here we see clearly the
period-doubling bifurcations that give birth to the cycles of period 2, 4, and
8.

Experiment 4.9 Compute the orbit diagram for Q. in the period 3 window
~1.8 < ¢ < —1.75 as well as in other areas in which the orbit of 0 appears to
be attracted to an attracting cycle. Do you notice any similarities between
these magnifications?

Outcome. In each case, it appears that the attracting orbit undergoes
period-doubling as the parameter increases. The period 3 window is depicted
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c=-1.8 -1.725

Figure 4.13 The period 3 window in the orbit diagram.
Note the period doublings here from 3 to 6 to 12 (barely visible).

in Figure 4.13.

Experiment 4.10 Compute the orbit diagrams corresponding to the initial
seed zg for the following families of functions. Do you notice any similarities
with the orbit diagram of Q.7

a. F(z]=c=(1-=),0£=51,15:<_‘14;=g=%

b. S5(z) =dsinz,0<z<m0<d<mzog=17n/2
Outcome. Up to a change of scale, each of these orbit diagrams is identical!
It is one of the amazing facts of dynamics that simple functions like these
always tend to become chaotic in the same manner. Note the clearly vis-
ible period doubling sequence with which each family begins its evolution.
Note also the period 3 window as well as other regions in which there is an

attracting periodic orbit. Using the magnification discussed earlier, can you
determine the periods of the basic cycle in these windows?
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Remark. You may wonder why we chose the value zg = 0 to plot the orbit
diagram for z? + ¢ (or zg = 3 for ez(1 — z) or zg = 7/2 for dsinz). We will
explain this choice much later when we discuss the Mandelbrot set. For now,
we merely mention that you will get “essentially” the same orbit diagram
no matter which initial seed zg you choose within the designated interval.
Occasionally this will fail if, for example, you inadvertently choose an z¢ that
itself lies on a repelling cycle. But this rarely occurs, as we have seen.

Further Exercises and Experiments

1. Compute the orbit diagram for T.(z) = z® — ez for -2 < z < 2 and
0 < ¢ <£3. Use the initial seed zg = \/c/:i.

2. Consider T3(z) = z° — 3z.

a.
b.

C.

d.

™

¢ s rm

J-

Show that the fixed points for T3 are 0,2, —2.

Are these fixed points repelling or attracting?

Show that ++/2 lies on a cycle of period 2 for T3. Is this cycle
attracting or repelling?

Find all points z that satisfy T3(z) = 2. Remember, z = 2 is one of
them; there is only one other.

. Find all points z that satisfy T3(z) = —2. There are only two such

points.
Use the information in a—e to sketch carefully the graph of T3 for
—-2<z<2

. Now sketch the graph of T? on this interval.
. Also sketch T3.

How many fixed points do you expect for T3, 7%, T3, Ts,...,T3?

Can you find any of these using ITERATE1?

3. This experiment deals with the family of functions C.(z) = ccos z.
a. Plot the orbit diagram for C. where —r <z <wand 0 <c¢ < w. Use

b.

zo = 0 as initial seed.

Using magnifications of the orbit diagram, find (at least approxi-
mately) intervals of c-values for which there is a single attracting
fixed point, an attracting period 2 cycle, an attracting period 4 cy-
cle, and so forth. Is there a period 3 window?

. Something strange happens to the orbit diagram for ¢ > 2.97.... Use

graphical analysis to explain what you see.
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Chapter 5

Iteration in the Complex Plane

We turn now to one of the most fascinating topics in dynamics, iteration
of functions of a eomplex rather than a real variable. Since many physical
processes depend on more than one variable, it is natural to consider dy-
namical systems in more than one dimension. Also, the dynamics of these
functions yield computer graphics images of great beauty and considerable
contemporary interest. Before turning to the computer experiments, we need
to review some facts about complex numbers.

5.1 Complex Numbers

Recall that the imaginary number i satisfies i = —1, that is, i = /—1.
Clearly, i is not a real number; rather, it is an example of a complex number.
A complex number is a number of the form z = z + i1y, where z and y are
real numbers. Sometimes we write z + yi instead of z + iy. For example,
2431, T=T+ 01, and 31 = 0 + 3: are all complex numbers. The number z
1s called the real part of z + iy, and y is the imaginary part.

Complex numbers are clearly not used for counting. They arise primarily
because of the need to solve certain equations that have no real numbers as
solutions. For example, the equation

22 4+1=0

clearly has no real solutions, but it does have the complex roots z = +1.
Similarly, the equation
z2 -4z 4+5=0
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has, using the quadratic formula, two complex roots, 2 & 1.

Another reason for the usefulness of complex numbers is geometric, since
complex numbers may be plotted in the plane in the natural way, with z 41y
plotted at the point with coordinates (z,y). Just as we may name any point
on the number line using a real number, we may name any point in the plane
using a complex number. So i is plotted at (0,1), whereas real numbers like
7 = 7+ 01 are plotted along the z-axis. In particular, the origin corresponds
to the complex number 0 = 0 + 0:. The modulus |z + 1y| is defined to be the
distance from z + iy to the origin. That is,

z +1y| = yz? + 92

Consequently,

2+3i|=v4+9=v13 and |i|=1

Note that the modulus of a real number is just its absolute value, which is
the reason for using the same notation for these two concepts.

We may operate algebraically with complex numbers in the natural way.
For example, we add two complex numbers by adding their respective real
parts and imaginary parts. That is, the sum of 2 4+ 3i and 4 + 61 is (2 + 4) +
(346): = 6 +9:i. The product of the two complex numbers z + iy and u +iv
is defined using the distributive property of multiplication.

(z +1iy) - (u + iv) = zu + i’yv + izv +iyu
= (zu — yv) +i(zv + yu)

Thus
(2431)-(4+6:) =8—-18+1(12+12)

= —10 + 24

and
(z +iy)(z+1iy) ==° — y* +i(2zy)

Addition and multiplication of complex numbers obey all of the usual
rules of algebra, including the commutative, associative, and distributive
laws. Without digressing to prove this here, we leave it as an exercise to
check these rules by computing the following sums and products in several
different ways.
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Exercise 5.1 Compute the following:

(34 21) 4+ (2 1)

. (68) +(3+2:)+5
(62) - (2 — 32)

. (14 41) - (7 + 3)
c(14+21)-((3+24) + (1 +T1))
f. (142:)-(1+ 4)

g (1+42)-(1+2i)

h. 4+ 4+ 4

1. 41 (41 + &)

o (4 +4) -4

o Ao T P

Geometrically, addition of two complex numbers may be interpreted as
follows. To add the complex numbers z and w, we first draw an arrow from
0 to z and from 0 to w. To find the complex number z + w, we simply
translate the arrow terminating at w so that it now begins at the tip of z.
The endpoint of this new arrow is z + w. We can similarly obtain z + w by
translating the arrow to z so that it begins at w. See Figure 5.1.

Z+W

Figure 5.1 Addition of complex numbers.

Note that this geometric interpretation of addition immediately gives us
the triangle inequality
1z + w| < |z| + |w]

This important inequality may be interpreted as saying the side of the tri-
angle in Figure 5.1 stretching from 0 to z + w has length that is less than
the sum of the sides from 0 to z and from z to z + w. Stated this way, the
inequality is obvious.
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There are other versions of this important inequality that we will use
over and over. For example, if we replace w by y — z, we get

wl=lz+y—z|<|z| + |y — 2|

using the usual triangle inequality applied to z and y — z. If we bring |z| to
the other side of this equation, we find

ly—z| 2 ly| — |2]

If we now replace z by —z, we find

ly+z| 2 |yl - |- 2|

Therefore, since | — z| = |z|, we have

ly + z| 2 |yl - |z]

We will use these versions of the triangle inequality several times in the next
few chapters.

5.2 The Program ITERATE4

Since multiplication of complex numbers makes sense, we can consider
an old friend, the squaring function, as a complex function. Let T(z) = 22,
where z = z + 1y is a complex number. In terms of the real and imaginary
parts of z, T is given by

T(z +iy) = 2° — y° +i(22y)

Thus the real part of T(z + iy) is z? — 3%, and the imaginary part is 2zy.
This is a perfectly good function: When we apply T to a complex number,
we get a new complex number, namely, z?. We may ask what happens when
we iterate T. The orbit of any complex number under this function is a
collection of points in the complex plane rather than on the real line, as
before. We may plot these points as we did before, remembering that there
are now two coordinates to plot instead of just one.

Figure 5.2 gives a BASIC program called ITERATEA4 to iterate the squar-
ing function T'. The program accepts as inputs the real and imaginary parts
of a complex number zg + iyp and then plots in the complex plane the first
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REM program ITERATE4
INPUT "x0%; x0
INPUT "y0"; y0
FOR j=1 TO 100
m-(x0+2)"75
n=(2-y0)*75
PSET (m,n)
FOR i=1 TO 1000
NEXT i
PSET (m,n), 30
FOR i=1 TO 100
NEXT |
X1 =x0*x0-y0*y0
yl=2"x0"y0
X0 = x1
yO = y1
NEXT |
END

Figure 5.2 The program ITERATEA4.

100 points on the orbit of zg + iyp. We plot only points that lie within the
square
lz| < 2

ly| <2

If a point on the orbit lies outside this square, we do not plot it. In fact,
when you compute certain orbits using this program, you will note that you
very quickly get overflow messages from the computer. We will see why this
happens shortly. As always, we must convert points in the complex plane to
their screen coordinates. In this example, we have transformed the square
—2<zp <2, -2 < yp < 2in the complex plane into a 300 x 300 square on
the screen. The screen coordinates (m,n) are given by the transformation

m=zu+2

*300 =(zo+2)+75

n_2;mt3m=(2—yo)#75



80 CHAOS, FRACTALS, AND DYNAMICS

This transformation is depicted in Figure 5.3. Note that zq + 1y = 0 + 10
is transformed to (150,150), the center of the screen, whereas —2 + 12 is
transformed to (0,0), the upper left-hand corner of the screen.

242 (0,0)

-2i (150, 300)
Figure 5.3 Transforming the complex plane to screen coordinates.

Transforming squares in the complex plane to squares on the screen is
not too much different from the process we used to plot points along a line
in Chapter 2. Often, because of the simplicity of the dynamical system we
study, the squares of interest will be centered at the origin. But this need
not be the case. Try your hand at constructing a transformation that takes
the given square in the next exercise onto a 300 x 300 grid on the screen.

Exercise 5.2 Convert the following squares in the complex plane into screen
coordinates by exhibiting the required transformation:

a. |zo| <3, |yo| <3

b. ~1<2z9<3,1<y <5

c. -5<29<0, |y| <25

We have included in ITERATEA4 several empty loops of the form

FOR I =1 to 1000
NEXT I

as pauses, which allow us to track points on the orbit as they are plotted; in
this loop, the computer simply counts to 1000 before moving on to compute
the next point on the orbit. As before, the statement

PSET(M, N), 30

simply erases the point that had been plotted previously. This allows us to
see the orbit clearly as it is being plotted.
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Experiment 5.3 Use ITERATE4 to describe the fate of any orbit of T'.

Outcome. It appears that any initial point zg + iyp with |zg 4+ 1y| < 1
has orbit that converges to 0, whereas if |29 4+ iyg| > 1, the orbit tends to
infinity. This is apparent because of the overflow messages you will receive
on your screen. As we saw before, when an orbit converges to 0, it does so

fairly quickly. Therefore, it appears that only a few points on the orbit are
plotted before the orbit reaches 0.

Note that the outcome of this experiment agrees with what we found
when we iterated T in the real case. The fact that orbits of points that

satisfy |zo + iyo| < 1 tend to 0 should come as no surprise. Indeed, we may
compute

IT'(z0 + iwo)| = |(z5 — ¥3) + i(2zow0)|
= V(23 - 1)? + (2zow)?
= V2§ + 1 — 22303 + 42333
= /(=2 + @)
= g + ¥

= |zo + iyo|*
< |zg + 1yo|

This last inequality follows from the fact that |zg + iyp| < 1, so the square
of this number is smaller than itself.

The inequality |T'(zg 4+ ty9)| < |zo + iyp| tells us that points that satisfy
|zo + iyo| < 1 move closer to 0 under one iteration of T'. As we continue to
iterate, this fact shows that the orbit continues to move closer to 0, which is
a fixed point. The previous experiment shows that some orbits may circulate
about 0 as they approach 0. Similar arguments show that points with |zg +
1yo| > 1 have orbits that tend to infinity under iteration of T.

So we have two predominant behaviors for orbits of points under T.
Points with modulus less than 1 tend to 0, which is a fixed point, under
iteration. Points with modulus larger than 1 escape to infinity. In between
are points with modulus exactly 1. These points lie on the circle of radius 1
in the complex plane. This set is what is known as the Julia set of T. We
do not describe the behavior of orbits of points in the Julia set now, but we
return to this question later when we discuss chaos. We also see later that
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most Julia sets are much more spectacular, geometrically speaking, than the
circle of radius 1.

The preceding argument can be easily adapted to show that if |zg +iy| =
1, then |T(zg + iyo)| = 1 as well. That is, if a point starts on the Julia set,
its orbit necessarily remains there forever. Because of this, we say that the
Julia set is tnvariant under T'. Even though we know that orbits are trapped
on the Julia set, it is difficult to find an orbit that actually does stay there

(except for +1 or +1). Try the following experiment to see this.

Exercise 5.4 Use ITERATEA4 to compute the orbits of the following points
under T(z) = z%. Note that each of these points has modulus 1.
a. .6+ .8

b. (141)/v2

Outcome. Each of these points lies on the circle of radius 1 (compute the
modulus to check this). However, when computed using ITERATE4, their
orbits eventually fall off the circle and tend either to 0 or to infinity.

The culprit responsible for this is again round-off error. Small errors
made in computing the orbit throws us off the Julia set. Once this occurs,
we know what must happen — the orbit tends to 0 or to infinity. This
foreshadows something we will see later — the Julia set is precisely the set
of unstable orbits of a complex dynamical system.

Project 5.5 Modify ITERATE4 so that the new program circles each point
as it 1s plotted, then a moment later erases the circle. This can be accom-
plished by replacing the five lines after the initial PSET command with

CIRCLE(m,n),3
FOR 1 =1 to 1000
NEXT 3

CIRCLE(m, n), 3,30

To summarize, we have seen that, for the complex squaring function, a
typical orbit falls into one of three categories.

1. The orbit is attracted to 0.
2. The orbit escapes to infinity.

3. The orbit does neither of the above but rather remains forever on the

Julia set.

In this sense, the Julia set is the boundary between the escaping orbits
and those that never escape. We will see that the Julia set generally contains
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all the complicated orbits that we saw in the first four chapters. Moreover,
for functions other than the squaring function, we will see that the Julia set
is often quite complicated itself.

5.3 The Julia Set

The Julia set of a complex function is named for the French mathemati-
cian Gaston Julia, who discovered many of the basic properties of the set
that bears his name in the early twentieth century. A precise definition of
the Julia set of a polynomial is that it is the boundary of the set of points
that escape to infinity. This means that a point in the Julia set has an orbit
that does not escape to infinity, but arbitrarily nearby there are points whose
orbits do escape.

Let’s begin our study of Julia sets by modifying the program ITERATE4
so that the new program computes orbits for any quadratic polynomial of
the form 2% + ¢. Here both z and ¢ will be complex numbers.

Project 5.6 Modify ITERATE4 to compute orbits of Q.(z) = z? + ¢. Your
new program should accept as input:

1. Any desired value of the constant ¢ = ¢; + 1¢3.
2. Any initial point zo = zg + 1¥p.
3. Any desired number of iterates.

Call this new program ITERATES. We use this program often in later
sections.

Experiment 5.7 Use ITERATES to compute some of the orbits of the
polynomial Q_;(z) = 2% — 1. Here z = z + iy is a complex variable, so

Q_i(z +iy) =22 —y* — 1 +i(22zy)
in the complex plane.

Outcome. As we saw for the real polynomial z? — 1, there are two predomi-
nant behaviors: Either orbits escape, or else they tend to an attracting cycle
of period 2 that oscillates between 0 and —1. The points whose orbits neither
escape nor tend to the cycle comprise the Julia set, though it is difficult to
picture what this set looks like right now.

Experiment 5.8 Use ITERATES to compute orbits of the complex poly-
nomial Q_3(z) = 2% — 2.
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Outcome. It appears that all orbits except those between —2 and +2 on
the z-axis tend to infinity.

Project 5.9 Modify ITERATES so that
1. Iteration stops if a point on the orbit has modulus larger than 10.
2. Instead of simply plotting successive points on the orbit, the com-
puter draws straight-line segments connecting successive points on
the orbit. This gives a different and more geometric method of view-
ing orbits in the complex plane.

Experiment 5.10 Use ITERATES to compute some of the orbits of Q(z) =
22 + .37 + .16i.

Outcome. Some of the orbits that do not escape appear to “fill out” circles
around a fixed point. What is this fixed point?

Further Exercises and Experiments

1. Why is it true that if |zg + iyg| = 1, then (zg + iyo)? also has modulus 1?7
2. Write a formula for the real and imaginary parts of (z+iy)® and (z +iy)*.

3. Use the previous exercise to modify ITERATE4 to compute the orbits
of the following.
a. F(z)=2°
b. F(z) = z*

4. Each of the following complex functions is of the form F(z) = ¢z, where
¢ 18 a complex constant. Use ITERATE4 to compute a variety of orbits
for each function. Record what you see. Can you draw any conclusions
from these observations? Use more c¢-values to help you decide which
functions have all nonzero orbits tending to infinity and which have all
orbits tending to 0.

. el

b =2

C. £=14

d. c=1+1
e.c=.0
f.c=1.11

g. ¢c= .6+ .8
h. c=%+i—§i
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Chapter 6

The Julia Set: Basin Boundaries

In this chapter we begin a detailed study of the geometry of the Julia
set. For simplicity, and also to tie in with our previous work, we concentrate
on quadratic functions of the form

Qc(z) = 2 +c

where ¢ is a complex parameter. That is, ¢ = ¢; + 1c2, where ¢; and ¢; are
real numbers. In this section we present an algorithm to compute the Julia
set of Q. that works well when Q. has an attracting periodic orbit. As we
have seen before, it is not always true that Q. has an attracting cycle. Thus
the algorithm we present here will fail for many c-values. However, in the
next chapter we present a different algorithm that works better when there
is no attracting cycle present. Also, it is difficult to predict ahead of time
which c-values will yield a dynamical system that has an attracting cycle.
Later, when we describe the Mandelbrot set, we will find an efficient way to
accomplish this.

In this chapter we consider only ¢ values with |¢| < 2, for reasons that
will become apparent in Chapter 8. Since

el = /& + 3

we are therefore looking at those c-values that lie on or inside the circle of
radius 2 in the c-plane. Recall from Chapter 4 that, when ¢ is real, all the
interesting dynamics occur on the interval —2 < ¢ < -}, sO our experiments
in this chapter include this case.
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6.1 Escaping Orbits

Now let’s return to the computer graphics. In case Q. has an attracting
periodic orbit, there is a collection of points that are attracted to the cycle.
These are points that lie in what we have called the basin of attraction of
the cycle. As we saw in the previous section, for T(z) = z?, there are also
points whose orbits tend to infinity. In between there are points that do
neither; these points lie on the boundary between the basin of attraction
and the escaping points. This is the set that is called the Julia set. So our
first method for plotting the Julia set is to color points white if their orbits
escape and to color them black if they do not. The boundary between these
two regions is then the Julia set.

How do we decide if an orbit tends to infinity? For quadratic functions
of the form z? 4 ¢ with |¢| < 2, this is easy to determine. The rule of thumb
1s: If any point on the orbit of 2z lies outside the circle of radius 2, then the
entire orbit escapes to infinity. So, to see if the orbit of z escapes, all we
need do is check whether any point on the orbit ever has modulus greater
than 2; if this is the case, then zj lies on an escaping orbit. To see why this
is true, recall that we are considering only c-values with |¢] < 2. If |z| > 2
and |c| < 2, then we have

1Qc(2)] = |2 + €| > |z|* — |e]
by one of our versions of the triangle inequality discussed in Chapter 5. But
|21* — le| > |2I* — |2| = (Iz] — 1)|=]
since |z| > |¢|, and therefore —|c| > —|z|. Now
Iz -1>1
since |z| > 2. Therefore, we may write
z| -1=1+¢
for some number £ > 0. Thus we have

Qc(2)| > (1 + £)l2]
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In particular,

1Qc(2)| > |z

This means, of course, that Q.(z) is farther from the origin than z is. Now we
may also apply this line of reasoning to Q%(z) = Q.(Q.(2)), since |Q.(z)| >
1z| > 2. We find

1Q2(2)] = 1Qe(Qe(2))] > (1 +£)|Qe(2)|
> (1+ 972

Thus Q?(z) is even further from the origin than Q.(z). Continuing in this
fashion, we find

1Qe(2)l > (1 + £)7|=|

Now recall that £ > 0, so that 1 + £ > 1. Hence the numbers (1 + £)" grow
as n gets large. We have

(144" = o0

as n — 00, so it follows that

1Q2(2)| — o

as n — 0o. That is, the orbit of z escapes to infinity.

This then gives us the test to decide if an orbit tends to infinity: If any
point on the orbit has modulus that exceeds 2, then we know that the orbit
must ultimately tend to infinity.

6.2 The Program JULIA1

We capitalize on this last fact in the program JULIA1 in Figure 6.1.
This program accepts as input a complex parameter ¢ = ¢; + ic3. It then
displays in black the set of points within the square |z|, |y| < 2 whose orbit
has not escaped beyond the circle of radius 2 centered at the ongin before
the twentieth iteration of Q.. Remember, though, that this test works only
for the function Q.(z) = 2% + ¢ when |¢| < 2.

More precisely, the algorithm that we use to produce the Julia sets of Q.
is given by the following:

1. Input ¢; and e;.
2. Select a 200 x 200 gnid in the plane.
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REM program JULIA1
INPUT "ci1”; ci
INPUT "c2%; c2

CLS

FOR m=0 TO 200

x0 = -2 + m/S50

FOR n=0 TO 100

y0O=2-n/50

X = X0

y=y0

FOR i=1TO 20
X1l=x"x-y*y+ci
y1=2"x"y +c2
X = X1
y=yl
Z=X"x+y"y
IF 2> 4 THEN GOTO 10
NEXT i

PSET (m,n)

PSET (200 - m, 200 - n)

10 NEXT n

NEXT m
END

Figure 6.1 The program JULIAL.

3. For each point 2z in this grid, compute the first 20 points on the orbit
of zg. Check at each stage of the iteration whether the corresponding
point lies outside the aircle of radius 2.
4. If any point on the orbit lies outside of the circle of radius 2, then
stop iterating and color the original point zy white.
5. If all 20 points on the orbit of zg lie inside the circle of radius 2, then
color the original point zg black.
Several comments are in order. This program takes quite a long time to
run. We are computing up to 20 iterations of Q. on each point in a 200 x 200
grid. That means we must compute up to 800,000 iterations of Q. in order
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to draw the set! Each iteration in turn involves a number of additions and
multiplications, so this is a lot of computations for a personal computer.
When running this program, we suggest that you find something else to do,
such as homework, to while away the time! You should also remember that,
at the outset, the computer may only be plotting white points, so nothing
may appear on your screen for quite a while.

As usual, we must change coordinates from the zy-coordinates of the
complex plane to screen coordinates. The transformation that links zy-
coordinates to screen coordinates is given by the statements

m

W

A +50
n
=
y 50

Here, screen coordinates are given by (m,n). Note that 1 < m,n < 200,
whereas —2 < z, y < 2. For each point (m,n) on the screen, the preceding
transformation singles out a complex number of the form z 4 1y whose orbit
we then test. The test is performed by the IF-THEN statement, where we
check whether or not |z|? > 4. It is quicker to test |z|> > 4 than to invoke
the square root function and then test whether |z| > 2.

Note that there is a triple nested loop in the program. We cycle through
the screen coordinates by first fixing the m-coordinate and selecting each
n-coordinate. Note that the n-coordinates run only from 0 to 100. This is
because we exploit a symmetry in the dynamical system. After one iteration,
the orbits of z and —z are the same; indeed, Q.(z) = Q.(—z). Thus if we
know that the orbit of z escapes, then so does the orbit of —z. Hence if we run
our test on the point (m,n), we know the result as well for (200 —-m,200—n),
which corresponds to —z. You must be careful when using this symmetry,
however. It only works if your “window” in the complex plane is centered
at the origin. Otherwise, in JULIA1l, n must cycle from 0 to 200 and the
statement

PSET(200 — M,200 - N)

must be eliminated.

Experiment 6.1 Check the accuracy of your JULIA1 program by running
it with the value ¢ = 0, that is, ¢; = 0 = 3.

Outcome. The output of this experiment should be a disk centered at
(100,100) in screen coordinates, with radius 50 pixels. (This is a very time-
consuming way to draw a disk!)
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Experiment 6.2 Use JULIA1 to generate the set of points whose orbit does
not escape under iteration of Q. for

a. ¢c= -1

b. ¢c=.3—- .4

c. ¢ = .360284 + .100376:2
d. c=-.1+.8

Outcome. The results of these experiments are depicted in Figure 6.2.

Remark. It is quite remarkable that pictures such as those in Figure 6.2
were seen for the first time only in the late 1970s and early 1980s! It is
true that mathematicians knew what certain Julia sets looked like (as, for
example, the simple Julia set of the squaring function), but it is also true that
nobody really understood how incredibly different and complicated these
pictures could be as the parameter ¢ changed, until very fast computers
became readily available. We invite you use the computer and JULIAL1 to
experiment by choosing different c-values and then plotting the Julia set.
You may be the first human ever to see the Julia set you compute!

As we noted earlier, it is the boundary, or edge, of the black region
computed by JULIA1 that is called the Julia set. The entire black region is
sometimes called the filled-in Julia set.

You may rightly object that our use of only 20 iterations in JULIA1 to
decide if an orbit escapes is wrong. Indeed, to be perfectly correct, we would
have to check all points on the orbit, clearly an impossible task. It is a fact
that, for many Julia sets of Q., 20 iterations suffice to give a very accurate
picture. You may check this by running the preceding experiment with 40
or 100 iterations and comparing the results. Note that it is easy to change
the program to accomplish this, but the resulting computer run takes hours.

6.3 Magnifying the Julia Set

There are a million different modifications of JULIA1 that can be used
to produce interesting images. One natural program to write would enable
the user to “zoom in” on a previously computed portion of the filled-in Julia
set.
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(a) (b)

(c) (d)

Figure 6.2 Julia sets for Q. (a) ¢ = —1,
(b) ¢ = .3 — 44, (c) ¢ = .360284 + .1003761, (d) ¢ = —.1 + .8s.

Project 6.3 Modify JULIA1 so that, after running JULIA1, the new pro-
gram prompts the user to select the lower left vertex and the side length
of a smaller square in the plane. The program should then recompute the
portion of the filled-in Julia set within this square using a 200 x 200 grid.
This finer grid yields a higher resolution magnification of a portion of the
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.

Figure 6.3 Magnifications of the Julia set of Q_;.

filled-in Julia set.

Experiment 6.4 Use this modification of JULIA1 to compute successive
enlargements of the filled-in Julia set of Q_;(z). You should always choose a
portion of the previous picture that contains a portion of the Julia set (after
all, all white or all black regions are not very interesting and they take quite
a while to generate!) Remember that the symmetry must not be used when
computing magnifications that are not centered at 0.

Outcome. See Figure 6.3. Note that successive enlargements of the Julia
set of Q_; reveal more and more “decorations” attached to the main black
“bulbs” in the filled-in Julia set. You may need to increase the number of
iterations to see this feature in satisfactory detail. The further we delve into
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the filled-in Julia set, the more decorations we see, but the pictures gener-
ated in smaller windows bear a strong resemblance to our original picture.
This feature is called self-similarity under magnification, a basic property of

fractals, a topic we take up later. See also Plates 1-3.

If your computer has a mouse, it would be useful to incorporate this
feature into your program by allowing the user to select via the mouse the
portion of a previous filled-in Julia set to be magnified.

The only difficulty in writing this program is in converting the new (z,y)
coordinates to the 200 x 200 grid in screen coordinates. By now, you should
have sufficient experience in transferring between these two coordinate sys-
tems, so we leave this computation as an exercise.

Project 6.5 Instead of using a 200 x 200 grid, better resolution can be
obtained by using more points in the grid and more than 20 iterations to
determine the filled in Julia set. You should be forewarned that an exces-
sive number of iterations and a large grid size slow the computations down
significantly, resulting in a program that may take hours or even days to run!

Project 6.6 Another interesting way to “capture” the filled-in Julia set is
to use different colors to paint the set of escaping orbits, depending upon
the time of escape. For example, if the orbit of a point 29 escapes after n
iterations (that is, the orbit has a point of modulus larger than 2 at iteration
n), we might color the original point black if n is odd, or white if n is even.
We can leave the original point white if it is in the filled-in Julia set. The

result of this project is a succession of white and black “rings” that surround
the filled-in Julia set.

Project 6.7 If your computer has color, striking images may be obtained by
assigning different colors to different escape times, as determined under the
previous project. For example, if your screen can display four other colors
besides black, you might color points that escape before iteration 6 with one
color, before iteration 11 with a second color, and so forth. This method
allows us to get a feeling for the “dynamics” of Q. near the Julia set. The
resulting images give bands of points whose escape rates range from very
quick to very slow. Of course, with more colors available, you can make the
color bands finer, thus giving a more accurate picture of the dynamics as
well as a more interesting image. See Plates 1-7.

Recall that in Chapter 4 we studied the saddle-node bifurcation. We
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(a) (b)

() (d)

Figure 6.4 The saddle-node bifurcation for z? + ¢ where (a) ¢ = .25,
(b) ¢ = .2541, (c) ¢ = .25448, and (d) ¢ = .255 using 50 iterations.

concentrated on the family of real functions

Qcz) =2 + ¢

with ¢ near % We saw that, for ¢ > ]‘“, all points on the real line escaped to

infinity, whereas if ¢ < ;ll-, there was an interval of points that did not escape.
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The next project allows you to see this same bifurcation in the complex
plane.

Project 6.8 Compute the Julia set of z? + ¢ for a number of c-values in the
range .24 < ¢ < .3.

Outcome. You will see the filled-in Julia set “implode” as the parameter
¢ increases through .25. See Figure 6.4. When ¢ > .25, most points have
orbits that escape under iteration. You may see this by fixing a c-value with
c > .25 and then computing the filled-in Julia set using 20, 40, and then 60
iterations. Note how the black region grows smaller as the iteration count
goes up. You should check that this does not happen if 0 < ¢ < .25.

A natural question is, What has happened to the filled-in Julia set as ¢
increases through .257 We see later that this set has disintegrated into what
is called fractal dust as we pass through the bifurcation point.

Project 6.9 If you have lots of computers at your disposal (as, for example,
in a classroom or computer lab) or if you have lots of friends with computers,
you can make a “movie” of the saddle-node bifurcation by computing many
different filled-in Julia sets for c-values in the range .24 < ¢ < .3.

Project 6.10 Investigate the period-doubling bifurcation at ¢ = —§ in a
similar fashion. What changes in the Julia set do you see as ¢ decreases

through —37

Further Exercises and Experiments

1. Let z =z 4 1y and ¢ = ¢; + 1c3. Write out the formula for the complex
logistic function F(z) = ¢z(1 — z) in terms of z,y, ¢;, and c3.

2. The Julia set for the complex logistic function F(z) = ¢cz(1 — z), where ¢
is now a complex parameter, may also be computed. However, we need
to modify the algorithm somewhat. We need a test to check when an
orbit escapes to infinity. Using the triangle inequality of Chapter 5, show

that if !
z| > — +1
lc|

then |F(z)| > |z|. Conclude that when z satisfies the preceding restric-
tion, the orbit of z tends to infinity.
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. Use the results of exercises 1 and 2 to compute the filled-in Julia set of

the complex logistic function for the following parameter values:

a. c=1

b. e=2

c. c=3.25

d. ¢c=2-1

e. ¢c= .6+ .8:
f. |:=-1§§+‘}§:'

. Use the program JULIA1 and its modifications to investigate the Julia

sets for the quadratic functions Q.(z) = z* + ¢ where
a. ¢ = —.48176 — .53165:

b. c=-1.25

c. ¢ = —.39054 — .5867%

d. c=-.11 4+ .6T:

Write out the real and imaginary parts of the expression z° 4 ¢, where
both z and ¢ are complex.

Let T.(z) = 2z 4+ ¢. Use the triangle inequality to check that if |z] > 2

and |c| < 2, then |T?*(z)| — oo as n — oo.

Use Exercises 6 and 7 to write a program analogous to JULIA1 that
displays the Julia set of the cubic function T.(z) = z° + c.
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Chapter 7

The Julia Set: Other Algorithms

QOur main goal in this chapter is to present alternative methods for dis-
playing the Julia set of a polynomial function. The major method we discuss
is the backward iteration method. This method has the advantage of working
much more quickly than our previous method, but the pictures it displays are
occasionally less precise. Other advantages include the fact that it produces
an image of the Julia set itself rather than the filled-in Julia set and the fact
that it works well when the previous method fails, notably when the Julia
set is “fractal dust.” Its disadvantage is the fact that we often find only the
“skeleton” of the Julia set — many points that really lie in the Julia set are
not found by this algorithm.

At the end of this chapter we outline a third method for computing Julia
sets, the boundary-scanning method. This method combines many of the
advantages of the previous two but takes even longer to run.

7.1 Polar Representation of a Complex Number

In the last two sections, we computed the orbit of a complex number
z under iteration of the quadratic function Q.(z) = z? + ¢. To do this, we
needed to know how to square a complex number. To compute the backward
orbit in this section, we will need to know how to “undo” this operation, that
is, to compute the square root of a complex number.

To explain the operation of taking square roots, we first need to discuss
the polar representation of a complex number. Suppose z = z + iy is a
complex number. In the Cartesian plane, z is located at the point with
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coordinates (z,y). We may equally well describe this point by giving its polar
coordinates, namely, the modulus of z and the polar angle. The polar angle
is the angle that the straight line connecting z to the origin makes with the
positive z-axis. We measure this angle in radians and in the counterclockwise
direction from the z-axis.

Recall that radian measure of angles is quite different from degrees:
When we use radians, we are measuring the length of the arc of the cir-
cle of radius 1 that is subtended by that angle. Therefore, an angle of 360°
is the same as an angle of 27 radians, since the circumference of a circle of
radius 1 is exactly 2x. Similarly, angles of 180° or = radians are the same,
and a right angle is an angle of x/2 radians.

Therefore, any point on the positive imaginary axis has polar angle r/2
and any point on the negative real axis has polar angle . We agree to
use negative angles if we measure polar angles in the clockwise direction, so
points on the negative real axis also have polar angle —r, whereas points on
the negative imaginary axis have polar angle —x/2 as well as 37 /2.

We use the notation r for the modulus and # for the polar angle. Thus,
if z=1+1, then r = /2 and @ = x/4. Similarly, if z = 3i, then r = 3
and § = w/2. Note that a given point may have many polar representations,
for there is always an ambiguity in measuring the polar angle. For example,
the point i has polar coordinates r = 1 and # = x/2. But an angle of
2w 4+ 7 /2 also determines the positive imaginary axis. So t also has the polar
representation »r = 1 and @ = 2x + x/2. Clearly, any multiple of 27 can be
added to the polar angle without changing the original point.

Exercise 7.1 Determine the modulus and the polar angle of each of the
following complex numbers.

a. z2=2+4+2

b. z=-T

C. z2=-=1+41
d. z = -4

e. z=1-+/3i

Given the polar representation of a complex number, we can determine its
Cartesian coordinates using a little trigonometry. If z has polar coordinates
r and 6, then we may draw the right triangle depicted in Figure 7.1. The
hypotenuse of this triangle has length r, so the side opposite the angle # has
length rsin #, and the adjacent side has length r cos 8. So z = rcos#+irsiné.
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Z = X + 1y

y=rsin®

x=rcos

Figure 7.1 The polar representation of z.

Conversely, if we know the Cartesian coordinates of a complex number,
then we may use the same triangle to determine the polar coordinates. If
z = z + iy, then the triangle in Figure 7.1 has opposite side with length y
and adjacent side of length z. Consequently,

tanf = y/z

Therefore, the polar angle is given by
f = arctan(y/z)

as long as z > 0, since the arctangent function takes only values between
—n/2and n/2. If z <0,

f = arctan(y/z) +

For example, the point with modulus 2 and angle /6 is given by z + 1y,
where

z = 2cos(r/6) = V3
y=2sin(x/6) =1
Using the polar representation of z, we can now compute the square roots

of z. Just as in the real case, each complex number has two square roots.

Suppose we are given the complex number z = rcos @ + irsin§. Then one of
the square roots of z has modulus /7 and polar angle 8/2, so that

Vz = /r cos(6/2) +i/rsin(6/2)
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As in the real case, the other square root of z is simply the negative of this
complex number.

To check that all of this is true, we simply square the number /z and
use some trigonometry:

Vz -z = /7 - \/r(cos’(8/2) — sin*(6/2))
+ 1y/r/7(2cos(8/2)sin(6/2))

Now recall the two addition formulas from trigonometry:
cos(A 4+ B) = cos Acos B — sin Asin B
sin(A + B) =sin Acos B + cos Asin B
If we apply these two formulas in the case where A = B = g, we find that

Vz-vz=rcos(8/2+ 6/2) +irsin(8/2 + 6/2)

= rcosf +irsinf

Thus, given a complex number z, we may find its two square roots by
first computing its polar representation, obtaining the modulus r and polar
angle # of z. Then the two square roots of z are given by

w) = /7 cos(8/2) + iv/rsin(8/2)
wy = —+/7 cos(8/2) — i/rsin(8/2)

For example, to compute /i, we first find the polar representation of i.
Clearly, this is »r = 1 and # = 7/2. Hence, one of the square roots of : has

modulus 1 = /1 and polar angle /4. That is, one square root is

Vi = cos(x/4) + isin(x/4) = % + \/—t-f
and the other is
Vi = cos(5%/4) + isin(5%/4) = —% - %

Exercise 7.2 Compute the square roots of each of the following complex
numbers.
a. z =4
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b. z2=1+1
C. 2= —1+41
d. z=-T7

e. z=-0.7

The operation of taking the complex square root has an easy geometric
interpretation: We simply take the square root of the modulus and halve the

polar angle. See Figure 7.2.

Figure 7.2 w; and w, are the two square roots of z.

7.2 The Squaring Function Again

Now let us see how the operation of taking square roots enables us to
compute Julia sets. Recall first our discussion of the dynamics of T'(z) = 2°
in Chapter 5. We saw then that all orbits of points that satisfy |z| # 1 tend
to one of two places: If |z| < 1, the orbit tends to 0, but if |z| > 1, the orbit
tends to infinity. Thus the circle of radius 1 is the boundary between points

that are attracted to 0 and points whose orbits escape. This is the Julia set
of T.

This suggests that we can find the Julia set of T by computing orbits
backward, using the square root. If zp satisfies |29 = » > 1, then the two
square roots of zg have modulus /7, and we have 1 < /r < r. On the other
hand, if 0 < |20] = r < 1, then r < /7 < 1. Notice that, in either case, \/7
18 closer to 1 than r is. This means no matter whetherr > 1 or r < 1, the
two square roots of zg lie nearer the circle of radius 1 than does z.

So, let’s choose one of the two square roots of zg; call this new point that
we have chosen z_;. Since T(z_;) = 2zp, we think of z_; as being the first
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Figure 7.8 Backward orbits of T(z) = 22.

point on one of the “backward” orbits of z5. We may now repeat this process
by choosing one of the two possible square roots of z_;. Call this square root
z_3. We then continue in this fashion — selecting a particular square root
and then taking one of its square roots. By our earlier reasoning, each time
we select one of the two possible square roots, the point we have selected is
closer to the Julia set. We thus see that the resulting backward orbit of the
squaring function tends to the circle of radius 1, the Julia set of T..

In this process, at each stage one of two square roots must be chosen. We
see shortly that it is best not to choose the “positive” or the “negative” square
root each time. Rather, it is best to choose one of these two possibilities
randomly. Figure 7.3 illustrates this procedure. Note that we have not
always chosen the same square root in this figure and that the successive
square roots z_j;,2_3,2_3,... of 25 tend to the circle of radius 1.

The only point whose backward orbit fails to tend to the Julia set is 0:
All other points have backward orbits that approach the Julia set.

7.3 The Program JULIA2

The preceding procedure works in general to produce a rough picture of
the Julia set of Q.(z) = 22 + ¢. To compute a backward orbit of Q., we note
that if

z:+c=w
then

z=xyw-—c¢

The complex number w — ¢ has two square roots; these are the two preimages
of w under Q..
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Our earlier remarks suggest the following algorithm for computing the
Julia set of Q..

1. Select any point wg in the complex plane.

2. Compute one of the two square roots of wg — ¢, choosing the positive
or negative square root randomly. Let zo denote the value of this
square root.

3. Replace wy by zp.

4. Perform Steps 2 and 3 a total of 15,000 times, plotting at each stage
the point zg in the plane. However, do not plot the first 50 points.

REM program JULIAZ2
INPUT "c1”; c1
INPUT "c2"; c2
INPUT "x0%; x0
INPUT "y0"; y0

pi = 3.14159

CLS
FOR i=1 TO 15000
w0 = x0 - c1
wl=y0-c2

IF wO=0 THEN theta = pi/2
IF wO> 0 THEN theta = ATN (w1 /w0)
IF wO < O THEN theta = pi + ATN (w1 / w0)

r=SQR (w0 * w0 + w1 * wil)
theta = theta/2 + INT (2 * RND) * pi
I’=SQH(I')
X0 =r * COS (theta)
y0 =r * SIN (theta)
IF i <50 THEN GOTO 77
m=(x0+2)*300/4
n= (2-y0)*300/4
PSET (m, n)

77 NEXT i

END

Figure 7.4 The program JULIA2.
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In Figure 7.4 we have displayed the program JULIA2 that carries out this
algorithm. This program accepts as input the parameter ¢ and an initial seed
zo and then computes 15,000 preimages of z9. At each stage, the program
randomly selects one of the two preimages. This is accomplished by using
the RND statement from BASIC. Each time the program encounters the
statement RND, it returns a random number between 0 and 1. Hence

2=RND
returns a random number between 0 and 2. Therefore, the statement
INT (2 +«RND)

returns either the value 0 or 1 randomly, since the INT function removes the
fractional part of its argument. Hence the statement

THETA = THETA/2 + INT(2 «+ RND) = PI

returns one of the two possible polar angles associated with the square root
function; the new polar angle is randomly selected to be either /2 or /2 +,
depending upon whether

INT (2+ RND) =0

or

INT (2« RND) =1

Note that in JULIA2 we do not plot the first 50 preimages, so that we only
plot points on the backward orbit which are very close to the Julia set.

Experiment 7.3 Use JULIA2 to plot the Julia sets of Q. for the following
c-values.

a. ¢c= -1

b. c=—.4—.6i
c.c=-1.5

d. c=1

e.c= .8+ .41
f.e=.5

g. c=3

h. e=1+1

). e=2
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Outcome. The Julia sets for these c-values assume a variety of different
shapes. See Figure 7.5. The Julia sets in parts (a)-(d) appear to consist
of just one piece. For ¢ = -1, the Julia set resembles the collection of
decorated circles we saw before. In parts (c) and (d), the Julia set is a
“dendrite,” which seemingly bounds no region, as do the Julia sets in parts
(a) and (b). In parts (e) and (f), the Julia sets appear to consist of many
disjoint “islands” of points.

Experiment 7.3 shows that the backward iteration method yields a much
quicker method of producing the Julia set. We need compute only 15,000
points on a single orbit rather than the 800,000 iterations that we needed
for JULIAL. It has some disadvantages, however. The Julia set for Q_-;
produced by this method does not seem to fill out the entire boundary dis-
played in Figure 6.2. Even if we increase the number of backward iterates in
JULIA2, we seem to miss some of the points in the Julia set. Nevertheless,
this method does yield a good approximation of the Julia set. The boundary
scanning method discussed later remedies this defect.

JULIA2 produces pictures of certain Julia sets that are impossible to
obtain by JULIA1, namely, those Julia sets that are not basin boundaries.
This is the case in parts (e)-(h) of Experiment 7.3.

Experiment 7.4 For a given ¢-value, compute the Julia set of Q. using a
number of different initial seeds. Compare the pictures you obtain.

Outcome. The Julia set of Q. generated by JULIA2 using a fixed c-value
but different initial seeds are virtually identical. The only exception to this
for the quadratic functions Q. occurs for the initial seed 0 when ¢ = 0. For
Qo(z) = 22, the only preimages of 0 are 0 itself, so the backward orbit of 0
does not tend to the Julia set. Remarkably, this is the only exceptional case
among all of the quadratic functions.

Experiment 7.5 Use JULIA2 to compute the Julia sets of Q. for a variety
of different c-values. How many different shapes can you find? Keep a
“scrapbook” of as many different kinds of Julia sets and their corresponding
c-values as you find. We see in the next chapter how the Mandelbrot set is
a “table of contents” for your scrapbook.

7.4 Fractal Dust

There is one obvious qualitative difference among the Julia sets in Figure
7.5. In some cases, the Julia sets appear to form a single, connected piece,
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o

(a)

(b)

(d)

Figure 7.5 Julia sets of Q. for (2) ¢ = -1, (b) ¢ = —.4 — .61,
(c) e=-1.5,(d) ¢ = —1, (¢) ¢ = —.8 + 41, and (f) ¢ = .5.
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whereas in other cases, the Julia set appears to consist of many pieces. From
the pictures we have generated so far, it would appear that these latter
Julia sets consist of finitely many isolated pieces. Actually, nothing could
be further from the truth. The next project allows us to delve more deeply
into the fractal nature of these Julia sets. We give a precise definition of the
word fractal in Chapter 9.

Project 7.8 Modify JULIA2 so that the new program allows us to magnify
a portion of the Julia set of Q.. Your program should accept as input a
small square within the original region and then recompute and display the
backward orbit within this region. You may need to use more iterations to
compute the magnified picture.

Experiment 7.7 Use this modified program to magnify various regions of
the Julia set of Q. when

a. c=—22

b. ¢=~-.8-.8:
c. c=—1+1
d. ¢c= .9

Outcome. In each case, if we magnify what appears to be an isolated piece
of the Julia set, we see that this piece is itself made up of separate isolated
chunks. Moreover, these smaller pieces bear a remarkable resemblance to the
original Julia set! See Figure 7.6.

Again we see that the Julia sets of Q. possess the property of self-
similarity under magnification. This is one of the basic properties of a fractal.
In Experiment 7.7, each successive magnification reveals that there are no
isolated chunks of the Julia set. If we carry out this magnification over and
over, we find that the Julia set consists of a “cloud” of points, each of which
lies in a separate piece of the Julia set. These types of Julia sets therefore
resemble fractal dust, although the technical term for this kind of structure
is a Cantor set. We discuss Cantor sets in more detail in Chapter 9. For now
we simply note that a Cantor set is totally disconnected. This means that if
we take any two points in the Cantor set — for instance, z5 and wg — there
is always a closed curve that never meets the Cantor set and that surrounds
zp but not wg. See Figure 7.7. Thus we can always isolate two points in a
totally disconnected set by means of a closed curve that does not intersect
the set.
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Figure 7.6 The Julia set of Q.(z) = 2% + 0.5 and several successive
magnifications. Part (b) is a magnification of the box in Part (a).
Note the similarity between (b) and (c).

At the opposite end of the spectrum are connected sets. A subset of the
plane is connected if it is impossible to find a closed curve that is disjoint
from the set and that separates the set into two disjoint pieces. For example,

an interval is connected, but a pair of disjoint intervals is not a connected
set.

Now let’s turn to the question of what makes certain Julia sets totally
disconnected and others apparently connected. The answer for this is simple
and is illustrated vividly by the following experiment.

Experiment 7.8 Use the programs ITERATES and JULIA2 to compute
the forward orbit of 0 for Q. and the Julia set corresponding to the same
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Figure 7.7 The curve ¢ separates zo from wy.
c-value. Use a variety of c-values, including

a. c= -1
b.c=0

c. c= —2
d. ¢c=.2
e. e=¢§
f.c=.3
g. ¢c=.9
h. c=1
i.c=2+1
J. ¢ =-3

Outcome. When the orbit of 0 escapes to infinity, as in cases (f)—(j), the
Julia set resembles fractal dust. When the orbit of 0 does not escape as in
cases (a)—(e), the Julia set appears to be connected. You can use graphical
analysis to check that the orbit does not escape in cases (a)-(d). Case (e)
requires that you compute the orbit of 0 explicitly; do this and see that 0 is
eventually periodic (and so never escapes).

The fact that the escape of the orbit of 0 governs whether or not the Julia
set of Q. is fractal dust is a true statement, which can be proved rigorously.
This is the first instance in which we see that the orbit of 0 plays a special
role in determining the dynamics of Q.. We will see other instances of this
as we go along, particularly when we discuss the Mandelbrot set in the next
chapter.
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Whenever the orbit of 0 escapes to infinity, the Julia set of Q. is fractal
dust, that is, is totally disconnected. On the other hand, if the orbit of 0
does not escape, the Julia set and the filled in Julia set are connected sets.
The amazing part of this statement is the fact that there is no in between:
Either the Julia set of Q. consists of one piece or else it consists of infinitely
many. For this reason, the point 0 is called a critical point. The orbit of 0

is called the critical orbit. The critical orbit thus plays a dominant role in
determining what the Julia set of Q. looks like. We make much use of this

fact in the next chapter when we describe the Mandelbrot set.

This is a good time to return again to the saddle-node bifurcation, which
we saw in the last chapter. Let’s use JULIA2 to explore the Julia sets of Q.
for c-values near 3.

Experiment 7.9 Use JULIA2 to compute the Julia sets of Q.(z) = 2% + ¢
for various real c-values near ¢ = %

Outcome. For ¢ < ;1;, the Julia set of Q. appears to be a connected set — a

curve. When ¢ > i-, this curve breaks up into infinitely many pieces. To be
honest, it is not so clear that this change occurs precisely at .25, but there
is clearly a change as ¢ increases from .2 to .3. Also try ¢ = .4 and ¢ = .5.

The results of this experiment bear out what we described before.

Exercise 7.10 Use graphical analysis to check that the orbit of 0 under
Qc(z) = 2% + c escapes to infinity if ¢ > % but does not escape if 0 < ¢ < {-

We may also explain at this point another phenomenon associated to the
saddle-node bifurcation. From the point of view of real dynamics, it appears
that Q. has two fixed points when ¢ < % and none when ¢ > } This was
shown in Figure 4.1.

From the point of view of the complex plane, however, there is no sudden
appearance of new fixed points at ¢ = % Indeed, if we solve the equation

Iz+t=t

using the quadratic formula, we see that this equation has two complex
solutions when ¢ > 4} This means that Q. has two fixed points in the

complex plane when ¢ > i These two fixed points simply come together
and meet when ¢ = 1 and thereafter stay on the real line.
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So where is the bifurcation in the complex plane? Our discussion of Julia
sets provides the answer. We have seen that the Julia set of Q. undergoes a
major change when ¢ decreases through % For ¢ > %, the Julia set of Q. is
totally disconnected, but when -2 < ¢ < }, the Julia set is connected. The
simple bifurcation at ¢ = $ has the global effect of “gluing” together all the
disjoint pieces of the Julia set at the same instant!

Experiment 7.11 Use JULIA2 to describe the global changes that occur in
the Julia set at the period-doubling bifurcation at ¢ = —%.

Outcome. The Julia set is a simple closed curve with no pinch points when
E —-%. All of a sudden, this curve becomes pinched together at infinitely

many points as ¢ passes through -%.

7.5 The Boundary-Scanning Method

In this section we outline a third method for computing the Julia set of
Qc, which works very well when Q. has an attracting cycle. The boundary-
scanning method produces a very sharp image of the Julia set, not the filled-
in Julia set, but it takes a long time to run on the computer. The idea
behind this method comes from the very definition of the Julia set as the
boundary between the set of points whose orbits escape and those whose
orbits are attracted to a cycle. What we will do is color a pixel if the orbit
corresponding to this point does not escape during the first 20 iterations but
some adjacent pixel’s orbit does escape.

The algorithm for the boundary-scanning method is as follows:

1. Select a 200 x 200 grid in the plane.

2. For each pixel (m,n) in this grid: Compute the first 20 points on the
orbit corresponding to (m,n). If any of the points on this orbit have
modulus greater than 2, color (m,n) white.

3. If the orbit corresponding to the pixel (m,n) does not escape, then com-
pute the first 20 points on the orbits corresponding to the four pixels
(m+1,n), (m —1,n), (m,n +1), and (m,n —1).

a. If at least one of these additional orbits escapes, then color (m,n)
black.

b. If all four of these additional orbits do not escape, then color (m,n)
white.
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Project 7.12 Use the preceding algorithm to write a program called JULIA3
to compute the Julia sets of Q. via the boundary scanning method. You
might consider writing a subroutine to compute the various orbits required

by this program using the GOSUB and RETURN statements. Remember
to make use of symmetry to speed up the program when applicable.

Experiment 7.13 Use JULIA3 to recompute the Julia sets of Q. when

a. c=—1
b. ¢e= ~.1 4 .81
c.c=.3—-.4
(a)
(b) (A (c)

Figure 7.8 Julia sets for Q. when (2) ¢ = -1, (b) ¢ = —-.1 + .84,
and (¢) ¢ = .3 — .41 computed using JULIA3.

Outcome. Some of the images generated by the boundary-scanning method
are shown in Figure 7.8. Note that the points that are “missing” from the
Julia set when ¢ = —1 in Figure 7.5 are now included.
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Chapter 8

The Mandelbrot Set

In the last few chapters we have seen that the quadratic function Q.(z) =
z2 + ¢ exhibits a vast number of different dynamical behaviors. Also, the Julia
sets of Q. vary greatly for different c-values. In this chapter we consider the
question of how we understand these different shapes and dynamics. We will
see that the Mandelbrot set provides a “dictionary” of all of these different
structures. In a sense, the Mandelbrot set is a compilation of all of the
different phenomena that we have already seen for the quadratic functions,
and this set explains how all of these different structures and shapes are
related.

We saw in the mathematical tour in Chapter 0 that the Mandelbrot set is
one of the most intricate and beautiful objects in mathematics. We will see
in this section that, despite its complexity, the Mandelbrot set is quite easy
to compute. Moreover, each little bulb or antenna in the Mandelbrot set has

a specific dynamical meaning that we can understand, given our previous
work.

8.1 Critical Points and Orbits

To construct the Mandelbrot set, we need simply to understand the orbit

of 0 under Q.(z) = z? + ¢ for each different c-value. We have looked at this
orbit before: Recall that when we plotted the orbit diagram of Q. on the real
line, it was the orbit of 0 that we plotted for each c. As we shall see, there is
a reason why we chose 0 and not some other initial point. Since the orbit of
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0 under Q. plays a special or critical role in determining the dynamics, this
orbit is called the critical orbit, and 0 is called the critical point.

For readers who know calculus, the precise reason why 0 is a critical
point is the fact that the denivative of Q. vanishes only at 0. For us, the
reason why 0 is a special point stems from the fact that 0 is the only point
that satisfies Q.(z) = ¢; there is no other point zg in the complex plane for
which

z§+c=c

Indeed, if we take any other point wg in the plane, there are always two
points zo in the plane that satisfy Q.(z0) = wo. We saw in the previous
section that we can solve the equation

zg+c=w0

by taking the two complex square roots of wg — ¢. These give two different
values for zp, provided wg — ¢ # 0. Thus wg = ¢ is the only value in the
complex plane that has just one preimage under Q., and that preimage is
the critical point 0. We will see that the critical orbit determines virtually
all of the dynamics of Q.. That is, if we know what happens to the critical
orbit, we can predict to a great extent the behavior of all other orbits.

We saw another instance of this in the previous section, where we saw
that if the orbit of 0 tended to infinity, then the Julia set of Q. was totally
disconnected. We used the term fractal dust to describe the Julia set in this
case. On the other hand, if the orbit of 0 did not escape, then the Julia set
was connected — it consisted of exactly one piece. Another of the major
reasons for the importance of the critical orbit is the following.

Fact. Suppose Q. has an attracting periodic orbit. Then the critical orbit
1s attracted to this orbit.

Although we cannot prove this here, we note that this fact has the im-
portant consequence that Q. can have at most one attracting periodic cycle,
since the critical orbit can be attracted to at most one attracting cycle. We
have already seen that some of these functions have infinitely many periodic
orbits (recall that Q_; has 2" distinct periodic points that are fixed for Q,).
So at most one of these orbits can be attracting, a somewhat surprising fact!

Given the importance of the orbit of 0 in determining the structure of
the Julia set as well as in finding attracting cycles, it seems natural to ask
which c-values have critical orbits that escape and which do not. As natural
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Here we have used the fact that |Q.(z)| > |z|(1 + £). Continuing in this
fashion, we find

1Qc(2)] 2 |2I(1 + 4"

Now 1 + £ > 1. Therefore the nth power of 1 + £ gets larger and larger as n
increases. Indeed,

1+ >

as n — 00. Therefore,

1Qc(2)| — o0

as n — oo too.

As a consequence, we now know that the Mandelbrot set lies within the
circle of radius 2 in the complex plane. Equivalently, if |c| > 2, then the
critical orbit of Q. must escape, and the Julia set of Q. is fractal dust. To
find the Mandelbrot set, we therefore need only check c-values inside the

circle of radius 2 to see if they belong to M. This may be done by using our
observation from Chapter 6: If the orbit of ¢ ever leaves the disk of radius 2,
then it necessarily escapes to infinity. This gives us the algorithm to compute
the Mandelbrot set; we simply compute the orbit of 0:

2
0,¢, 2 + ¢, (c?+¢) +e¢, ((c’+c)’+c) +e...

and check whether any point on this orbit has modulus larger than 2. Once
this occurs, we are guaranteed that the critical orbit escapes and ¢ does not
belong to the Mandelbrot set.

8.3 The Program MANDELBROT1

Let’s now use these ideas to write a program called MANDELBROT]1,
which draws the Mandelbrot set. The algorithm is straightforward, given
what we already know:

1. Divide the square —2 < |z|, |ly| < 2 in the plane into a 300 x 300 grid.
2. Treat each grid point as a c-value.

3. For each such ¢, check whether the orbit of 0 under Q. escapes within
the first 30 iterations.

4. If so, color ¢ white.
5. If not, color ¢ black.
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as this question seems, it is amazing that it was asked (and answered) only
in 1978 by Benoit Mandelbrot. He was among the first to wonder what the
set of c-values whose critical orbit does not escape looks like. Since he is a
Research Fellow at IBM, he had the perfect tool nearby to look at this set,
the computer. What he found has been called the most intricate object in
all of mathematics; this set now bears his name, the Mandelbrot set.

8.2 Construction of the Mandelbrot Set

In this section, we describe the theory behind the computer program that
produces the Mandelbrot set. To be precise, the Mandelbrot set is the set
of c-values for which the critical orbit of Q. does not tend to infinity. We
call this set M. As we will see, M is a dictionary that contains descriptions
of all of the different dynamics that occur for the quadratic family. We
emphasize the fact that the Mandelbrot set is a picture in the c-plane, not
in the z-plane, where the Julia sets live.

What does M look like? To answer this we need to know which c-values
have critical orbits that escape. It is easy to see that certain c-values lead to
immediate escape of the critical orbit. For example, it is true that if |c| > 2,
then the orbit of 0 escapes immediately. To see why this is true, we write
lc| = 2 + £, with £ > 0. We claim that any point z with |z| > |c| escapes
under iteration of Q. (so, in particular, c itself escapes, and ¢ = Q.(0), so
the orbit of 0 escapes). This happens because if |z| > |¢| > 2, then

1Qc(2)| = |22 4 ¢| > |z|* = |e] by the triangle inequality
> |2|* - |2
= |2l(12] - 1)
> |z|(1 + ¢)

This means that |Q.(z)| > |z|(1 + £) as long as |z]| > |¢|]. But 1 +£ > 1.
Therefore, |Q.(z)| > |z|. This result may be interpreted as saying that as
long as z lies outside the circle of radius |¢| > 2 in the plane, then its image
Qc(z) lies further away from the origin than z does. That is, under one iter-
ation, such points move closer to infinity. Therefore, we may apply the same
argument to say that under two iterations, such points move even further
away from the origin. Precisely, we may apply the preceding reasoning to
Q?%(z) to find

1Q%(2)] = |Qc(Qc(2))] = 1Qc(2)I(1 +£)  since |Q.(z)| is larger than 2
> |z|(1 + &)
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Figure 8.1 displays a BASIC program that uses this algorithm. Note the
similarity between this program and our earlier JULIA1. The only differ-
ence here is subtle; for each grid point in the plane, we must remember the
corresponding value of ¢ throughout the iteration. That is why we use the
statements

X =0Cl
Y =C2
at the outset and then perform all of the computations using z and y.

REM program MANDELBROT1
CLS

FOR i=1 TO 300
FOR j=1 TO 150

c1=-2+4"i/300

c2=2-4"j/300

x =cl

y=c2
FOR n=1 TO 30
x1=x"x-y"y+cl
y1=2"x"y+c2
r=x1"x1+y1*yl
IF r>4 THEN GOTO 1000

X = Xx1
y =yl
NEXT n
PSET (i, j)
PSET (i, 300 - j)
1000 NEXT |
NEXT i
END

Figure 8.1 The program MANDELBROT1.

We have again made use of a symmetry to speed up MANDELBROT1.
Unlike the Julia sets of Q., M is not symmetric about the origin; M is
not preserved by replacing both ¢; and c; by their negatives. However, the
Mandelbrot set is symmetric about the z-axis in the following sense. Suppose
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we know that the point ¢ = ¢; + 1cz lies in the Mandelbrot set, with ¢z > 0.
Then ¢; — ic2 must also lie in M.

To understand why this is so, we need to introduce the notion of the
complex conjugate. If z = z 4 i1y is a complex number, its complez conjugate
is a new complex number given by Z = z — 1y. That is, 7 differs from z in
that the sign of its imaginary part changes. Figure 8.2 shows the geometric
interpretation of complex conjugation.

Figure 8.2 The complex conjugate of z = z + 1y.

Complex conjugation has several simple algebraic properties that you
may easily check. For example, if z and w are complex numbers, then

Z4w=z4+w

In particular, it follows that

That is, the complex conjugate of the image of z under Q. is precisely the
same as the image of 7 under Qz. This simply means that if we know the
orbit of z under Q., we can obtain the orbit of Z under Qz by simply taking
the complex conjugate at each stage. See Figure 8.3. In particular, the orbit
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Q.(2)

Figure 8.3 The orbits of z under Q. and Z under Q5.

of € under Qz is precisely the complex conjugate of the orbit of ¢ under Q..
Thus if the critical orbit of Q. escapes, so too does the critical orbit of Q:.
We have used this fact to cut in half the number of computations nec-

essary to produce M. Indeed, if the pixel corresponding to ¢ is colored
black, then we immediately color € black too. This is accomplished by the
statements

PSET(M,N)

PSET(M,300 - N)

Figure 8.4 The Mandelbrot set.

Figure 8.4 displays the image generated by MANDELBROT1. Remem-
ber that this is a picture in the c-plane — the parameter plane. Unlike the
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situation for Julia sets, where we get a different picture for each different
c-value, here there is only one image. In M, each pixel that is colored black
corresponds to a quadratic function whose Julia set is connected. As we have
seen, these Julia sets come in a variety of shapes and sizes. The Mandelbrot
set tells us which c-values correspond to Julia sets with the same basic shape
and which quadratic functions have more or less the same dynamics.

Note that M consists of a basic cardioid-shaped region with many “dec-
orations,” or bulbs, attached. The cusp of the cardioid occurs precisely at
the point ¢ = i, which is the value that corresponds to the saddle-node bi-
furcation. Directly to the left of the main cardioid is a large, circular region.
This bulb is attached to the cardioid at ¢ = —2, which is the period-doubling
bifurcation point. Finally, there appears to be a tail, or antenna, which em-
anates from M and points toward the left. This tail lies along the real axis
and terminates at exactly ¢ = —2, which is the parameter value for which we
found infinitely many periodic points earlier. We will return to make a much
more detailed study of M and what all of these decorations and antennae
mean, but first let’s modify MANDELBROT1 so that we can see the fine
detail in M.

8.4 Refinements of MANDELBROT1

We will often return to the Mandelbrot set in the remainder of this
chapter. As you may have noticed, it takes quite a while to compute the
image of M. Therefore, it would be wise to save the image in a file rather
than recompute 1t each time we need to look at it.

There are a number of ways to save the image. One way that is highly
inefficient is to save the number of iterations necessary to “fail” the test
in MANDELBROT1. That is, for each pixel tested, we record the integer
value at which our program stops computing the orbit of ¢. This will result
in a 300 x 300 array of integers. Given 1 byte of storage per pixel, this
means we will have to store 9 x 10* bytes of information. While this is not a
prohibitive amount of information to be stored using today’s technology, we
can compress this data significantly.

Project 8.1 Devise an efficient method for storing your image of the Man-
delbrot set so that you can redisplay it on the screen at will, without recom-
puting all of the orbits.

Saving the iteration count (as opposed to a simple black/white indicator)
will be useful if you use some of the later programs that utilize color.
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As in the case of Julia sets, there are more sophisticated algorithms
that produce sharper images of the Mandelbrot set. We discuss some of
them next. Our goal is to understand what the Mandelbrot set means. To
comprehend the relationship between Julia sets and the Mandelbrot set, it
is helpful to be able to magnify certain portions of M. This is accomplished
by the following program.

Project 8.2 Write a program called MANDELBROT?2 that allows the user
to select a square from the output of MANDELBROT1. The new program
then recomputes the portion of M in a 300 x 300 grid inside this square.
Your program should allow the user to select and compute in successively
smaller and smaller squares in order to visualize the fine structure of M.
Since many more than 30 iterations will be necessary to view M in fine
detail, your program should allow the user to select the maximum number
of points on the critical orbit that will be computed before coloring a pixel
white.

Remember that the symmetry exploited in MANDELBROT1 will no
longer be valid for this program (unless the chosen square is symmetric about
the z-axis). So you will have to compute the critical orbits for all of the ¢-
values in your square and eliminate the second PSET command.

Experiment 8.3 Use MANDELBROT?2 to compute the portion of M that
lies inside the following small squares in the c-plane.

a. The box with side of length .02 centered at —1.256 + .38s.

b. The box with side of length .03 centered at —1.185 + 0.3s.

Outcome. In both cases, you will see small copies of the Mandelbrot set
inside these windows. See Figure 8.5. This is one of the truly remarkable
and surprising features of M. All the complexity that occurs in the “main
body” of M occurs as well within these smaller copies. So there are baby
Mandelbrot sets within these small copies of Mandelbrot set, and so on. It
is difficult to see these smaller Mandelbrot sets without resorting to double-

precision computations and higher-resolution screens, however.

There are many, many other interesting regimes in the Mandelbrot set
that you can explore with this program.

Experiment 8.4 Use MANDELBROT?2 to compute various portions of the
M. Keep a record of the coordinates of each image you generate as well as



CHAPTER 8 THE MANDELBROT SET 123

Figure 8.8 Detail of the Mandelbrot set.

Despite appearances to the contrary, the Mandelbrot set is a connected

set, This is a remarkable recent theorem, which was proved by the mathe-
maticians Adrien Douady and John Hubbard in 1982. Note that Figures 8.4
and 8.5 seem to suggest that M has small “islands,” which are not attached
to the main body. In fact, however, these islands are connected to the main
body by thin filaments that are invisible at this resolution.

The boundary scanning method used to display Julia sets may also be

used to generate the Mandelbrot set. This method makes use of the following

algorithm:

1. Divide the square —2 < |z|,|y| < 2 into a 300 x 300 grid in the plane.
For each pixel (m,n) in this grid:

2. Let ¢ be the value in the plane corresponding to (m,n).

3. Compute the first 20 points on the critical orbit of Q..

4, If any point on this orbit has modulus larger than 2, then color (m,n)
white.

. If this orbit does not escape, then compute the critical orbits of the c-

values corresponding to the four pixels (m 4+ 1,n), (m —1,n), (m,n+1),

and (m,n — 1).

a. If at least one of these additional orbits escapes, then color (m,n)
black.

b. If all four of these additional orbits do not escape, then color (m,n)
white.

This method yields a quite different picture of M; only the boundary of M
is colored. Can you explain why?
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Figure 8.5 Baby Mandelbrot sets within M.

a picture book of these images. Can you find the various regimes depicted
in the color plates in Chapter 07

Outcome. Two portions of M are displayed in Figure 8.6. The first image
here is the small bulb that sits on top of the main cardioid in M. This 1s
called the period 3 bulb, for reasons that we will explain later. The coordi-
nates in the complex plane are —4 < z < .2 and .6 < y < 1.2. The second

image 1s that of one of the bulbs located near the cusp in the main cardioid.
The coordinates are .385 < z < .485 and .17 < y < .27T.
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Project 8.5 Use the boundary-scanning method to write a program called
MANDELBROT3. Use this program to explore various regions of M. It is
quite interesting to examine the bulbs of M using this method, especially
those near the cusp of the main cardioid.

The image of the Mandelbrot set generated by MANDELBROTS is dis-
played in Figure 8.7.

Figure 8.7 M computed by the boundary-scanning method.

8.5 What the Mandelbrot Set Means

Now let’s write the granddaddy of all Mandelbrot set programs. This
program will allow us to understand the relationship between the Julia sets
for Q. and the corresponding c-values in M.

Project 8.6 Construct a program called MANDELBROT4, which builds on
MANDELBROT?2 and allows the user to select a particular c-value from the
image displayed by MANDELBROT2. The user should be able to select this
c-value using a mouse or cross hairs, if possible, or else by using the keyboard
to choose particular screen coordinates. In any event, once a particular ¢-
value has been selected, the user should be given the choice of selecting one
of our previous programs, ITERATES or JULIA2, as applied to Q. for the
chosen c-value. The screen should then be cleared and the appropriate orbit
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or Julia set displayed. Note that it is crucial that we be able to restore
M to the screen quickly in order to be able to use this program effectively;
recomputing M each time wastes a lot of time!

Experiment 8.7 Use MANDELBROT4 to compute the orbit of ¢ and the
Julia set of Q., where ¢ is any value in the cardioid-shaped region in M (the
largest black bulb with the cusp at ¢ = ).

Outcome. For each c-value in this region, the critical orbit is attracted to
an attracting fixed point and the Julia set is a closed curve.

Experiment 8.8 Use MANDELBROT4 to compute the orbit of ¢ and the
Julia set of Q., where ¢ is any value in the large, circular bulb immediately
to the left of the cardioid.

Outcome. The critical orbit is attracted to an attracting cycle of period 2
and the Julia sets resemble the Julia set of Q_;(z) = 2% — 1.

Experiment 8.9 Use MANDELBROT4 to compute the critical orbit of Q.
when c is inside one of the bulbs in M.

Outcome. You will see that, as long as c is strictly within one of the bulbs,
the critical orbit is attracted to an attracting cycle. The period of this cycle
depends very much upon which bulb ¢ lies in, but it remains the same for all
c-values in a given bulb. For example, in the small ball directly to the left
of the period two regime discussed in the last experiment, the critical orbit
1s attracted to a cycle of prime period 4.

Experiment 8.10 What happens to the critical orbit when ¢ is inside one
of the two largest balls attached to the top and bottom of the main cardioid?

If you have stored other images of portions of M such as those in Figure
8.5 or 8.6, you can further investigate the relationship between M and the
Julia sets. For example, what happens when c lies inside the main cardioids
of each of the baby Mandelbrot sets in Figure 8.57

Thus we see that the Mandelbrot set contains dynamical information
about the behavior of the critical orbits and the shape of the Julia set. Inside
each of the black bulbs in M, the critical orbit behaves in the same manner.
Usually, this means that the critical orbit is attracted to a cycle of some
fixed period. To be honest, nobody knows whether this always happens, but
extensive numerical experimentation suggests that this is true.
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0.25

-0.75

Figure 8.9 The orbit diagram and M.
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Thus we may assign to each bulb in M a number that corresponds to
the period of the attracting cycle for each Q. with ¢ in that bulb.

Experiment 8.11 Compute the period of the attracting cycle for as many
bulbs in M that your computer allows you to see.

Outcome. Partial results of this experiment are displayed in Figure 8.8.

3 N

Figure 8.8 The periods of the bulbs in M.

Recall the orbit diagram for the quadratic family Q.(z) = z? + ¢ that
we constructed in Chapter 4. To construct this diagram, we looked at the
last 150 of 200 points on the orbit of 0 under iteration of Q. for a real value
of ¢. This is essentially what we did to compute M. This means that there
1s a direct relationship between the orbit diagram and the horizontal slice
through the middle of M. After all, this horizontal line tells us what happens
to the critical orbit for real values of c.

Figure 8.9 juxtaposes these two images. The real c-values for the orbit
diagram and M are each plotted horizontally; the scale has been chosen so
that ¢ increases from —2 to .5 in each picture with corresponding c-values
located directly above and below one another. Note that the attracting fixed
point regime corresponds exactly to the main cardioid, as we know from our
preceding experiment . Similarly, the period 2 and 4 regimes correspond.
Note that the period 3 window in the orbit diagram sits directly above the
baby Mandelbrot set located in the tail of M. This explains why this period 3
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cycle undergoes period doubling as ¢ decreases; the parameter passes through
all the period—doubling bulbs of this baby Mandelbrot set as ¢ decreases.

There is much more to this story, as is obvious from the orbit diagram.
Many of the critical orbits do not seem to find an attracting cycle. This is
true no matter how many iterations you choose in the program ORBITDGM.
These c-values do not lie in the bulbs attached to M. Rather, they lie on the
thin filaments and correspond to c-values for which there are no attracting
cycles whatsoever. These c-values yield dynamics that are extremely compli-
cated. They are the parameter values for which Q. is chaotic. We will spend
most of Chapter 10 investigating what this term means. For now we simply
note that, as is apparent from Figure 8.9, many of the c-values between —2
and .25 lead to chaotic dynamics.

Further Exercises and Experiments

1. Write a program similar to MANDELBROT1 to compute the analogue
of the Mandelbrot set for the function F.(z) = Z* + ¢, where Z is the
complex conjugate of z as introduced in Section 8.3. This set is called
the “tricorn” because of its resemblance to a tricornered hat.

2. If you have lots of friends with computers, you can make a large “mural”
of the Mandelbrot set by slicing up the region |¢| < 2 into many squares
and then computing the portion of M inside each square. You can then
cut and paste together all the output from this experiment to obtain a
detailed picture of the Mandelbrot set. Of course, your friends who are
assigned all-black regions of M will not have too much fun.

3. Compute the analogue of the Mandelbrot set for the complex logistic
function F(z) = cz(1 — z). In this case, the critical point is 3, not 0, so
you must compute the orbit of 3 to see if it escapes. One test to decide
if orbits of the logistic map escape was given in Problem 2 of Chapter 6.
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Chapter 9

Geometric Iteration: Fractals

The word fractal has arisen several times thus far in our discussion of
dynamical systems. We used fractal to describe Julia sets which, when mag-
nified over and over again, always seemed to look the same. We also en-
countered this term when Julia sets disintegrated into fractal dust. In this
chapter we delve more deeply into the amazingly complicated yet regular
structure of these sets. We show how to create a large variety of fractals and
we discuss how these sets naturally have “fractional” dimension.

9.1 Fractals

There are many mathematical processes that may be iterated. We have
already seen how iterated functions give rise to complicated dynamics. Now
we will iterate certain geometric constructions. These iterations will yield
the complicated geometric objects known as fractals.

The subject of fractal geometry was given its name by Benoit Mandelbrot
in the mid-1970s. Actually, this subject has a long and interesting history in
mathematics, involving many mathematicians from many parts of the world
over the last centuries, including Peano from Italy, Cantor and Hausdorff
from Germany, Besicovitch from Russia, and many others. Mandelbrot real-
ized that the bizarre, seemingly contrived geometric constructions engineered
by these mathematicians were not at all pathological, as they were at first
regarded. Rather, he showed that many everyday objects such as coast-
lines, snowflakes, clouds, leaves, ferns, and mountain ranges were naturally
described by fractals. Ordinary geometric constructions using straight lines
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and smooth curves and surfaces did not help very much to understand or
to model many of the intricate patterns found in nature. Thus was born a
new branch of mathematics, fractal geometry. In its short lifespan, this field
of mathematics has proved to be extremely useful in a variety of applica-
tions. Even Hollywood has made use of fractal geometry to create fractal
landscapes and planetscapes for films.

What is a fractal? Basically, a fractal is a geometric shape that has two
special properties:

1. The object is self-similar.
2. The object has fractional dimension.

In the next few sections we present several geometric constructions of
fractals to illustrate the concept of self-similarity. Then we move on to the
more difficult question of how an object can have fractional dimension.

9.2 The Sierpinski Triangle

The Sierpinski triangle is generated by an infinite succession of “re-
movals.” We begin with an equilateral triangle. We then remove the middle
upside-down triangle, as depicted in Figure 9.1. This leaves three smaller
equilateral triangles untouched. From each of these triangles we then re-
move the middle equilateral triangle, which then leaves nine smaller equilat-
eral triangles. We then iterate this procedure: from each remaining equilat-

eral triangle we remove the middle triangle, leaving three smaller triangles
behind.

Exercise 9.1 How many triangles remain after the third collection of trian-

gles is removed? After the fourth? After the fifth? Can you find a formula
for the number of triangles which remain after the n th stage of this process?

The ultimate figure that results from all of these removals is called the
Sierpinski triangle. Notice that this “triangle” has no two-dimensional re-
gions whatsoever — any planar piece of the original triangle is eventually
decimated by the removal of small triangles. See Figure 9.2.

Why is this figure self-similar? To understand this, let’s look closely at
the lower left portion of the triangle, the portion contained within one of the
three triangles that remain after the first step of the process. Notice that the
length of a side of this triangle is exactly one-half the length of a side of the
original triangle. Notice also that we have removed infinitely many triangles
from this smaller triangle, just as we have from the original one. Moreover, if
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Figure 9.1 Construction of the Sierpinski Triangle.
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Figure 9.2 The Sierpinski triangle.

we peer at this triangle through a microscope that magnifies all dimensions
by a factor of two, then what we see is precisely the entire Sierpinski triangle!
That is, this small, lower left portion of the triangle is exactly the same as
the whole triangle when magnified by a factor of two! This is by no means
the end of the story. Suppose we take any of the nine triangles that remain
after the second stage of removals. If we magnify this triangle by a factor
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of four, we again find the original triangle, and if we magnify the portion of
the Sierpinski triangle inside this small triangle by four, we again find the
original figure.

This continues no matter how “deep” we look within the triangle. The
portion of the triangle contained within a triangle at level n, when magnified
by a factor of 2", is exactly the same as the whole tnangle. This is self-
similarity — small portions of the tnangle, when magnified, are similar to
the whole triangle.

Exercise 9.2 Carefully draw the next stages of the figure that is obtained
by removing four smaller squares from a square, as depicted in Figure 9.3.
How many squares are left after the third removal? After the fourth? The
result of this operation is depicted in Figure 9.4.

Figure 9.3 Construction of the box-fractal.

Figure 9.4 The box-fractal.
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9.3 The Cantor Set

In many senses, the simplest of all fractals is the Cantor set. It is also one
whose “cousin” we encountered when we found Julia sets that were fractal
dust. To construct this set we begin with the interval 0 < z < 1. From this
we remove the middle third: the interval -} <8 < % Note that we leave
the endpoints behind. What remains is a pair of intervals, each of them
one-third as long as the original. Now we do this again: From each of the
remaining intervals we remove the middle third. That is, from the interval
0<z< %,weremuve%<=<§,mdfmm§£=£1wemmwe%<:< %.
Note that, in each case, we have again left behind the endpoints; now four
intervals remain, each one-ninth as long as the original interval.

We now repeat this process over and over. At each stage, we remove the
middle third of each of the intervals remaining at the previous stage. What
is left when we are finished is the Cantor middle-thirds set, or, for short, the
Cantor set. See Figure 9.5.
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Figure 9.5 Construction of the Cantor middle-thirds set.

Exercise 9.3 Identify the endpoints of the intervals that are removed at the
third stage of the process. How many intervals remain behind? Identify the
endpoints of the intervals that are removed at the next two stages of this
process.

At each stage, the number of intervals that are left behind increases, but
they become small quite quickly. There are 2 = 2! intervals of length % after

the first removal, 2? intervals of length J after the second, 2° of length 3y



134 CHAOS, FRACTALS, AND DYNAMICS

after the third, and so forth. For example, there are 1024 intervals after the
tenth stage of this process, but each has length

1 1
310 59 049

= .0000169...

Note that there are points that are never removed during this process, so
the Cantor set is not an empty set. For example, any endpoint of a removed
interval belongs to the Cantor set. This is true, since at each stage we remove
an interval that is close to, but never contains, this endpoint. So it follows
that 0,1,4,2 1 2 1 and £ are all points in the Cantor set.

Note also that the Cantor set contains no intervals, for if it did, at some
stage we would have removed its middle third. This means, to use a word
we introduced in Chapter 7, that the Cantor set is totally disconnected:
Between any two points in the set, there must be points that do not belong
to the set.

The Cantor set is also self-similar. To see this, look closely at the left
interval 0 < z < 3, which remains behind after the first interval is removed.
There is a portion of the Cantor set contained within this interval. If we
examine this portion of the Cantor set using a microscope that magnifies by
a factor of three, then what we see is an exact replica of the full Cantor set!

The same thing is true if we magnify the right-hand interval by a factor
of three. If we zoom in on any of the intervals remaining at the second stage,
for example 0 < z < 3, then magnification by a factor of 9 reveals the full
Cantor set again. See Figure 9.6. You should compare this with Figure 7.6.

- . - . - . - e
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Figure 9.6 Magnification of the Cantor set by a factor of 3.

The action of viewing a Cantor set under a microscope can be made
mathematically precise, for it corresponds exactly to multiplication by a
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power of 3. For example, what happens if we multiply each number in
0 <z< % by 37 The operation of multiplying by 3 stretches this small
interval over the entire interval 0 < z < 1. Moreover the middle third,
% <2< % of the small interval corresponds exactly to the middle third,
% <z < %, of the larger interval. Subsequent middle thirds correspond as
well. So we see that magnification of this interval is really just multiplication
by 3.

It is interesting to ponder this fact for a while. It may seem that there
are exactly one half the number of points in the Cantor set that lie in the
left-hand interval. But magnification shows that there are, in fact, just as

many points in this side of the Cantor set as there are in the whole set —
this small portion of the Cantor set is exactly the same as the whole set!

Exercise 8.4 You can construct another Cantor set by removing middle
fifths of intervals, instead of middle thirds. That is, we remove the interval
2 <z <2 from0<z<1 at the first stage, then remove the middle fifth of
each remaining interval, and so forth. List the intervals that are removed in
the first few stages of this construction.

It may appear that the only points in the Cantor set are endpoints of
the intervals that have been removed. Actually, this is far from the truth:
There are many, many other points in the Cantor set that are not endpoints.
In fact, most points in the Cantor set are not endpoints! Here is how to see
this. Each time we remove an interval, we leave behind two other intervals,
one on the left and one on the right. If a point lies in the Cantor set, then
we may identify it by giving the sequence of lefts and rights that indicate to
which interval the point belongs as each successively smaller middle interval
is removed. For example, 0 corresponds to all lefts, because 0 is always in
the left—-hand subinterval as each middle third is removed. So we write

0— LLLL...
to indicate this. Similarly, 1 is always in the right hand interval, so
1— RRRR...

You may easily check that

| =
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because -;- lies in the original left interval, but thereafter it is always the
rightmost endpoint of any interval which undergoes a removal. Also,

2
EHRLLL--.

! LLRRR...

9

gHLRLLL...

Exercise 9.5 ldentify the sequence of lefts and rights corresponding to
78 1 7 25 19

519177227, 77> 1 and §.

Notice one fact. Each endpoint of an interval corresponds to a sequence
that consists of a finite number of lefts or rights, followed by an infinite string
that is either all lefts or all rights. This means that any point corresponding
to a sequence that does not terminate in all lefts or all nghts cannot possibly
be an endpoint. Do you see why?

You are right to ask whether or not there are any such points. Indeed
there are! Here’s how to see that there is a point that corresponds to the
repeating sequence LRLRLR .... Start with the left interval 0 < z < 4.

This interval contains the right-hand subinterval % <2< % constructed at

stage 2. This interval, in turn, contains the left-hand interval & < z < 3-
constructed at stage 3. The right-hand interval constructed at stage four is
ﬁ! <z< %}. Can you continue this process? Do you see the pattern?

Exercise 9.6 Identify the intervals corresponding to the repeating sequence
LRLRLR... at the fifth, sixth, and seventh stages of this process.

Note that at the kth stage of this construction, we find an interval of

length %k that is contained inside the previous interval. These intervals
decrease in size until, when the process is completed, only one point remains.
This is the point that corresponds to the sequence LRLRLR. ... Note that
this point can’t be an endpoint of a removed interval because the sequence
LRLRLR... does not end in a constant sequence.

Remark. Amazingly, you can compute the point that corresponds to this
sequence exactly! The number with sequence LRLRLR... is % Similarly,

i corresponds to the sequence RLRLRL.... To understand this, you need
to know how to compute infinite series, a topic usually covered in calculus.
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Similar arguments show that there is a point in the Cantor set that
corresponds to any sequence of lefts and rights. Clearly, there are many,
many sequences that do not correspond to endpoints; there is more to a

Cantor set than first meets the eye!

9.4 The Koch Snowflake

Unlike the Sierpinski triangle, the Koch snowflake is generated by an
infinite succession of additions. This time we begin with the boundary of an
equilateral triangle with side of length 1. The first step in the process is to
remove the middle third of each side of the triangle, just as we did in the
construction of the Cantor set. This time, however, we replace each of these
pieces with two pieces of equal length, giving the star-shaped region depicted
in Figure 9.7. This new figure has 12 sides, each of length 3. Now we iterate
this process. From each of these 12 sides we remove the middle third and
replace it with a triangular “bulge” comprised of two pieces of length 1/9.
The result is also shown in Figure 9.7.

VA
R

Figure 9.7 The first four stages
in the construction of the Koch snowflake.

We continue this process over and over. The ultimate result is a curve
that is infinitely wiggly — there are no straight lines in it whatsoever. This
object is called the Koch snowflake.
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Why is this snowflake self-similar? Suppose we look at one side of the
original triangle. What we see is depicted in Figure 9.8. If we examine one
third of this edge and magnify this portion by a factor of three, we again see

\ e\

Figure 9.8 Magnification of the Koch snowflake.

At each stage of the construction of the Koch curve, magnification by a
factor of 3 yields the previous image. As before, this means that the ultimate
figure is self-similar.

This fractal has an amazing geometric property: It has finite area but its
perimeter is infinite! This means that we can paint the inside of the Koch
snowflake, but we can never wrap a length of string around its boundary!
This is quite a contrast to the usual shapes encountered in geometry such as
squares and circles, which have finite area and perimeter.

Let’s see why this is true. Let Np, Ny, N;,... denote the number of sides
of the snowflake at the corresponding stage of the construction. We find

No=3
Ni=4-3=12
N2=4-l2=42'3
N;s=4%.3

We obtain the number at the kth stage by simply multiplying Ni_, by 4,
since our procedure calls for subdividing each side into 4 smaller ones.

Therefore we have
Ny =4Np_; = 4.3
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These numbers get large very quickly. For example, Ny gives 196,608 little
sides!

Now let’s compute the perimeter. Let L; be the length of one segment
of the perimeter after the k th stage. Notice that in the beginning, each side

has length 1; after the first addition, each side has length ;}; after the second,
each side has length -}2, and so forth. We find that, at the kth stage,

Now let P, be the perimeter of the figure at the kth stage. Clearly, P, =
N - L. That is, P} is simply the product of the number of segments at the
kth stage and the length of each of these segments. We find

1
Jﬂ.,.—_-1~i,.,-LJ.,=4*"-3-r3—Jb

.
. (i) .3
3

Note that, from this formula, each P; is larger than its predecessor by a
factor of -‘5 So we see that the perimeter of the snowflake keeps getting
larger and larger by a factor of § as the number of stages grows. Hence, the
ultimate perimeter must be infinite!

The area contained within the snowflake is more difficult to compute, but
you can easily check using plane geometry that the snowflake is contained

within a square in the plane whose sides have length 21/3/3. Do you see
why? Therefore this area is less than ;

Project 9.7 Can you think of other fractals that are generated by additions
like the Koch snowflake? Draw the first few steps in the construction.

9.5 Computing Fractals

Certain fractals such as the Cantor set or the Sierpinski triangle are
easy to draw using a computer and an iterative procedure similar to the
backward iteration method of Chapter 7. We will obtain these fractals as
the orbit of a single point under the iteration of a collection of functions. One
major difference between this process and our previous work is that these
functions will be iterated in random order. A second difference is that we
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will define these functions directly in screen coordinates rather than on the
line or plane. This will eliminate the need to change coordinates in order to
plot the fractals.

Let’s begin with a simple example. Suppose we consider the three points
A = (0,0), B = (0,300), and C = (300,300) on the screen. We will define
three functions F4, Fg, and F¢. In words, F4 is given by the rule: Take any
point (M, N) on the screen and move it to the point halfway between A and
(M,N). Fg and F¢ are defined analogously.

What are the formulas for these functions? As we see in Figure 9.9, the
midpoint between A and (M, N) is simply (M/2,N/2). Of course, one or
both of M/2 and N/2 may not be an integer. This will not matter to us
because, when we plot these points via the PSET command, they will be
rounded to the nearest integer.

+
B M2 300 +

Figure 9.9 The functions F4, Fg, and Fg.

The midpoint between B and (M, N) is given by

M 3w+N)
2’ 2

FB(MNN)_(

The midpoint between C and (M, N) is

300 + M) 300+ N

FC(M‘IN)_( 2 9 )

If we draw the right triangle T with vertices A, B, and C, then the
geometric interpretation of these functions is depicted in Figure 9.10. Each
function compresses T into a new triangle exactly half the size of T and
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A

F,(T)

(M F_(T)

B C

Figure 9.10 The image of T under Fy4, Fpg, and Fg.

having exactly one vertex in common with T. For example, F4(T) is the
small right triangle with one vertex at A, as shown in Figure 9.10.

Now let’s iterate these three functions in random order. More precisely,
we will input any point (M, N) in screen coordinates. Then we will randomly
select a number ¢ between 0 and 3. If 0 < ¢ < 1, then we will apply Fy;
if 1 < g < 2, we will apply Fpg; and if 2 < ¢ < 3, we will apply Fo. The
resulting iteration gives us what is known as a random orbit of (M, N). As
before, in plotting this orbit, we will not plot the first few points on the
random orbit.

In Figure 9.11 we have listed a program called FRACTAL, which imple-
ments this algorithm. Several remarks are in order. In this program, the
function RN D returns a random number between 0 and 1. Hence 3 * RND
returns a random number ¢ between 0 and 3. Depending on the value of g,
we branch to compute the function F4, Fg, or F¢. Instead of employing this
time-consuming branching process, we could have replaced the branches by
the single statements

g=INT(3+= RND)
M=M/24+qg+*(qg—1)+T75
N=N/2+qg=(3—¢q)=T75

Note that in this formulation, ¢ is an integer, either 0, 1, or 2. The new value
of Mis M/2ifg=0o0r g=1, but if g = 2, then the new value of M is

M M + 300
?+150— >

Similarly, the new value of N assumes the correct form if ¢ = 0,1, or 2.
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REM program FRACTAL
INPUT "M"; M
INPUT "N"; N
CLS
FOR I=1 TO 100000
g = 3"RND
IF g<1 GOTO 10
IF gq<2 GOTO 20

M=(300+M)/2
N=(300+N)/2
GOTO 100

10 M=M/2
N=N/2
GOTO 100

20 M=M/2
N=(300+N)/2

100 IF | <1000 THEN GOTO 200

PSET (M, N)

200 NEXT i

END

Figure 9.11 The program FRACTAL.

Experiment 9.8 Use FRACTAL to compute a random orbit of any point
(M,N). What do you observe for different choices of M and N7

Outcome. No matter which M and N are input, the same figure results. See
Figure 9.12. Note that this image is a fractal and bears a strong resemblance

to the Sierpinski triangle.

It is quite amazing that the picture resulting from the random iteration
in FRACTAL does not seem to depend on M or N. Virtually any random
orbit yields the same figure, at least at the resolution of the screen. You can
define a similar set of functions in the plane: In this case the random orbit
would lie in the plane and assume noninteger values. But again, virtually
the same picture will result from any random orbit.
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k|
.

D B\

‘1
D BB B

Figure 9.12 The output of FRACTAL.

The collection of functions that we have iterated randomly is called an
iterated function system. Recent research of Barnsley and others has shown
that these kinds of dynamical systems are quite important in such applica-
tions as image and data compression. The reason for this is that a com-
plicated picture like Figure 9.12 can be stored in memory using only the
defining function F4, Fg, and F¢ rather than storing the coordinates of all

the points that make up the picture.

The fractal that results from this process is called an atiractor because
it attracts all of the random orbits. That is the reason why we drop the first
1000 points on a random orbit: We wish to see only the attractor.

Clearly, it is easy to modify FRACTAL to obtain a variety of interesting
images.

Project 9.9 Modify FRACTAL so that it randomly iterates one of the
following five functions. Let A = (0,0), B = (300,0), C = (300,300), D =
(0,300), and E = (150,150). Each of the functions F4 through Fg moves
a point (M, N) two-thirds of the way toward the corresponding point A-E.
For example,

Fg(M,N) = ((2 %150 + M)/3,(2 + 150 + N)/3)
Fp(M,N) = (M/3,(2+300+ N)/3)

What fractal results when you run this program? What happens if you leave
out one of the functions such as F4?

Exercise 9.10 Find an iterated function system that produces the Sierpinski
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triangle as its output. Find another system that produces the middle-thirds
Cantor set.

Exercise 9.11 Use the methods of this section to construct a variety of
fractals. Once you select the iterated function system, can you predict ahead
of time what the resulting attractor will look like?

9.6 Fractional Dimension

How do we assign a dimension to a geometric object? For certain famil-
iar figures like lines or squares or cubes, it’s easy. We almost intuitively feel
that a line has dimension one, a square dimension two, and a cube dimen-
sion three. Perhaps that’s because we feel that there is essentially only one
direction that we can move along on a line, two directions in a square, and
three in a cube. This is fine, but how do we use this idea to calculate the
dimension of the Sierpinski triangle? At times, we feel that we can move
in lots of planar directions on this triangle; at other times it seems like the
final shape is only one-dimensional. So what is the dimension? Actually, it
is somewhere in between, just as our eye and our “feelings” are telling us.

To see why this should be true, let’s investigate the notion of dimension
of lines, squares, and cubes more thoroughly. One way to realize that these
objects have different dimensions is to do the following. A line is a very self-
similar object: It may be decomposed into n = n! little “bite-size” pieces,
each of which is exactly £ the size of the original line and each of which,
when magnified by a factor of n, looks exactly like the whole line. On the
other hand, if we decompose a square into pieces that are i the size of the
original square, then we find we need n? such pieces to reassemble the square.
Similarly, a cube may be decomposed into n® pieces, each -& the size of the
original. See Figure 9.13. So, here is one way to distinguish the dimension
of an object: The exponent in each of these cases is precisely the dimension.

In these simple cases, it is trivial to read the exponent and find the
dimension. For fractals, this is not always as easy, so let’s formalize this
procedure. One way to find the exponent in these three cases is to use the

logarithm of the number of constituent pieces into which the object has been
subdivided. For a line, we find

log (number of pieces) = log(n') = 1logn
For a square,

log (number of pieces) = log(n?) = 2logn
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Figure 9.13 Calculating the dimensions of a line and a square.
and for a cube,
log (number of pieces) = log(n®) = 3logn

Now remember that we divided the line, square, and cube into pieces which,
when magnified by a factor of n, gave the original figure. So if we now divide
log (number of pieces) by the logarithm of this magnification factor, we get
the dimension. That is, the dimension D is given by the formula

log (number of pieces

D=
log (magnification)
So, for a line, we find
1
D= . i =]
logn
For a square,
D logn? 2logn 0
logn logn

and for a cube,

3
D= logn® 3logn .
logn logn
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Each of these calculations was easy because the magnification factor in
each case was n. But what about our Sierpinski triangle? Recall that the
lower left corner of this figure could be magnified by a factor of 2 to produce
the whole triangle. On the other hand, the triangle consists of precisely 3
separate pieces, all identical to each other, namely, the lower left, the lower
right, and the upper triangles. So mimicking what we did for the line, square,
and cube, we find that the dimension of the Sierpinski triangle is

D — log (number of triangles) log3 1585

log (magnification)  log2
which is by no means an integer! Let’s try this again. The Sierpinski triangle
may also be manufactured by assembling nine smaller pieces as we described
in Section 9.2. Each of these smaller triangles is exactly one-fourth the size
of the original figure. Hence

D log9 log3® 2log3 log3
" log4  log2? 2log2 log2
and we get the same answer.

To calculate the dimension of the Koch snowflake, we recall that each

side of the original triangle is decomposed into four smaller pieces with a
magnification factor of 3. Therefore,

log 4
D=——=1262...
log 3 ’
We use the sides of the snowflake because no piece of the snowflake may be
magnified to look like the whole object; pieces of the sides are self-similar,
however. If we proceed to the second stage of the construction, there are
then 16 sides, but the magnification factor is 3. Again,

log4? 2log4
=~ log3? _ 2log3

Notice that the dimension of the snowflake is somewhat smaller than
that of the Sierpinski triangle. This agrees with what our eyes are telling us.
The triangle looks larger, more two-dimensional, than the snowflake curve,
and hence it has a larger dimension.

Finally, for the Cantor set, the number of intervals at each stage of the
construction is 27, but the magnification factor is 3®. So,

D = 1.262...

_log2® nlog2
" log3® nlog3

D .6039...
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Exercise 8.12 Compute the dimension of the middle-fifths Cantor set. Com-
pute the dimension of the box-fractal in Figure 9.4.

Remark. The dimensions computed in this section were easy to compute

because the magnification factor always increased at the same rate as the
number of pieces in the figure. For many fractals, this is not the case. For
example, the Julia sets of Chapters 6 and 7 often have fractional dimension,
but this dimension is very difficult to compute. Indeed, for many Julia sets,
the exact dimension is unknown. Nevertheless, a glance at Figure 7.5 tells
us that these fractals should have different dimensions, and indeed they do.

9.6 Fractals and Dynamics

In this section we show how fractals arise naturally in dynamical systems.
Of course, we have seen this to some extent already when we discussed Julia
sets. Here we will show how the Cantor middle-thirds set arises naturally in
a dynamical system.

Consider the function

3z z

IA
= N

T(z) = {

3—3z z>

The graph of T 1s shown in Figure 9.14. T is called a ient function because of

the shape of its graph. The following exercise shows that all the interesting
orbits of T lie within the interval 0 < z < 1.

Exercise 8.13 Use graphical analysis to show that if z < 0, then T"(z) —
—00 as n — oo. Similarly, show that if z > 1, then T™(z) — —o0 as n — oo.

So we need consider only orbits that remain forever in the interval 0 <
z < 1. As we have so often in the past, let’s begin to investigate the dynamics
by using the computer.

Experiment 8.14 Use ITERATE] or ITERATE3 to compute various orbits
of T' with initial seed zq satisfying 0 < zg < 1.

Outcome. You will probably find several orbits that do not leave 0 < z <1
under iteration. For example, the fixed points at zg = 0 and zg = -i- do not

leave. But it appears that almost all other orbits do leave.
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15T

05 I

Figure 9.14 The graph of the tent function.

This should remind you of the situation with the logistic function F(z) =
cz(1 — z) for c-values larger than 4 (see Section 2.2). In fact, the situation
in this case is very similar.

From the preceding exercise, we need consider only the orbits of points
in 0 € z € 1. However, many of these orbits eventually leave this interval.
Indeed, Figure 9.15 shows that, if 3 < z < ;, then T'(z) > 1. This means
that each point in % <2< g leaves 0 < z < 1 after one iteration. Hence we
know what must happen: This orbit tends to —oco. Thus we need consider
only what happens to points in the remaining intervals, 0 < z < } and
¢<z<1.

Here is where we begin to see a Cantor set emerging. Which points
in) <z < % or % < z < 1 have orbits that remain for all iterations in
0 <2 €17 Let’s see. After one application of T, each of these intervals is
stretched over the entire interval 0 < z < 1, since, for example, T(0) = 0
and T(3) = 1. Hence there are points in this interval whose image lies in
% <2< ; If z¢ is any such point, then T%(zg) < 0, since T(z) > 1 for
any z in %— <2< % Therefore, as we have already seen, T"(zg) — —o0 as
n — oo.

Clearly, if § < zo < § or § < zo < §, then we have 1 < T(z0) < .
Therefore, we may forget about these two intervals, because orbits of points
here tend to —oco. Figure 9.15 shows this.

Continuing in this fashion, we see that there are four intervals having the
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1.5

173 2/3 |

Figure 9.15 A Cantor set for the dynamics of T'.

property that any point zo in them satisfies T%(zg) > 1. Therefore, these
points have orbits tending to —oco. Thus we see that we may disregard any
middle-third interval, exactly as in the construction of the Cantor set. Stated
in the opposite way, we see that it is precisely the Cantor middle-thirds set
whose points have orbits that do not tend to —oco. Thus, all the interesting
dynamics for T take place on a fractal, the Cantor middle-thirds set.

Exercise 9.15 Sketch the graph of 72,73, T for 0 < z < 1. Conclude that
T? has 4 fixed points, T has 8, and T* has 16. How many fixed points does
T™ have?

Exercise 9.18. Let z9 be any endpoint of the Cantor middle-thirds set.
What can you say about the orbit of zo? Conclude that none of the periodic
points found in the previous exercise (except 0) are endpoints.

The previous two exercises confirm what we saw earlier — there are many
more points in the Cantor set than the endpoints of the removed intervals.
We can compute many of the periodic points of T'. For example, -1% and '1%
lie on a cycle of period 2, since T(5) = 75 and T'(55) = 75- Note that the
orbit of 'i% hops back and forth between the original left and right intervals
in the Cantor set construction. We may therefore associate a sequence of
lefts and rights to these points which give the “approximate” location of
each of the points on this orbit. For example, the sequence associated to
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3 is LRLRLR.... Similarly, the sequence associated to 75 is RLRLRL.....
Note that both of these sequences are repeating; this corresponds to the fact
that the orbits themselves are periodic. Similarly, the point ll'u is eventually
periodic, because T(75) = 75; the associated sequenceis LLRLRLR.. .. One
of the amazing facts about the Cantor set is that every point in the Cantor
set has a unique representation as a sequence of Ls and Rs. Conversely, every
sequence of Ls and Rs corresponds to a point in the Cantor set. This means
that there are lots of different orbits for T in the Cantor set! This is also the
beginning of a very interesting subject in mathematics known as symbolic
dynamics.

Remark. The sequence of lefts and rights discussed above is different from

the sequences discussed in Exercises 9.5 and 9.6. The earlier sequences are
related to the ternary expansion of numbers in the Cantor set, while these

new sequences are related to the dynamics of T'.

Exercise 9.17 Verify that each of the following points is a periodic (or fixed)
point for T' and find its prime period.

a. zo =3
b o
+ T =18
C. E‘g=%
d. zﬂ:i;i

What is the sequence of Ls and Rs associated to each of these points? Can
you find a formula that gives a periodic point of period n for T?7 Hint: Do
you see a pattern in the denominators of these points?

Exercise 9.18 Find a function that has the property that the set of points
whose orbits do not escape to —oo is precisely the Cantor middle-fifths set.
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Chapter 10

Chaos

Our goal in this section is to explain one of the most important recent
discoveries in mathematics, the fact that very simple dynamical processes
can behave in a very complicated, almost random fashion. We have seen
this type of behavior already when we looked at the dynamics of the logistic
function Fc(z) = c¢z(1 — z), where we saw that, for many values of ¢, the
successive points on the orbit of z under F. seem to hop around the line
unpredictably. We saw this with a number of our earlier programs, including
ITERATE], ITERATE2 and ORBITDGM. This is the concept of chaos, one
of the most important new topics in mathematics.

Actually, chaos is all around us. From the swirling patterns of a hurri-
cane on a meteorologist’s radar scope to the eddies and swirls of 2 mountain
stream, from the ups and downs of the stock market to the uncontrollable
patterns formed by smoke as it rises, all these phenomena seem totally unpre-
dictable and out of control. All these phenomena are inherently chaotic. You
may protest that you know the reason why. All these examples — weather
systems, the economy, hydrodynamic flows — involve countless variables.
It would be physically impossible for any human being to understand and
predict all of the facets of the economy or where each and every molecule
of water will travel in a stream. This is certainly the case, but this is not
necessarily what makes a system chaotic. As we will see, even simple func-
tions like our quadratic family behave just as unpredictably when iterated.
All the ingredients of chaos are present in this simple dynamical system.

This is the fundamental breakthrough made by mathematicians in recent
years, the realization that chaotic systems need not depend on huge numbers
of variables but may in fact depend on only one, as in the case of cz(1 — z).
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This discovery bodes well for scientists in all disciplines. The realization that
chaos can be studied by elementary means will stimulate scientists to explore
chaotic phenomena with a different approach, searching for the one or two
variables that may cause a system to behave unpredictably. This in turn may
lead to a new understanding of chaotic phenomena in nature, particularly
those that previously seemed unfathomable.

As we mentioned in the introduction, our aim is to present only the
mathematical ideas behind chaos. We will leave the applications of these
ideas to others. You should remember, however, that these ideas are so new
that many of them have yet to find applications in science and engineering.
In the future, however, it seems plausible that these ideas will find many
important applications.

10.1 The Squaring Function Again

The prototype of a chaotic function is the squaring function, T(z) = 2?,
where z is complex. Of course, not all orbits of the squaring function are
unpredictable. As we have seen, if |z| < 1, then the orbit of z tends to
the attracting fixed point at 0. If |z| > 1, then the orbit of z tends to
infinity. What remains are the points on the circle of radius 1, and it is these
points whose orbits are chaotic. So our aim therefore becomes to explain the
behavior of these orbits and why they are chaotic. Remember that the circle
of radius 1 is precisely the Julia set. The behavior that we will uncover is
typical of all Julia sets, not just the Julia set of z°.

How do we understand the behavior of these orbits? Recall that a point
on the circle of radius 1 can be written in polar form as

z=ocosf +1sinb
Its image under the squaring function is given by

T(z) = 22 = cos’ § — sin’ @ + 2i sinf cos
= cos(20) + isin(26).

That is, the point with polar angle # is moved by T to the point with polar
angle 26.

We can use graphical analysis to understand how these polar angles
change under iteration. Recall that the polar angle of a point is defined
only up to a multiple of 2x. This means that the angles 8§, 8 + 2w, 0 +4n,...



CHAPTER 10 CHAOS 153

all represent the same point on the circle. We will always represent a point
by its angle 8§, where 0 < § < 2x. This means that if we double an angle
and get a result between 2x and 4w, we will simply subtract 2x from the
result, thus yielding a polar angle between 0 and 2x. If you are familiar with
modular arithmetic, we are simply multiplying angles by 2 mod 2x. We will
denote this doubling function by D; that is,

D(8) = 28 mod 2x

Equivalently, for 0 < 8 < 2w,

26 if 20 < 2n

D(a).-_.-{
20 - 2x if2xr <20 < 4nx

Note that if 0 < 8 < 2x, D(6) can be no larger than 4r.

This formula allows us to use graphical analysis to understand the squar-
ing function. The graph of D is shown in Figure 10.1. This function may be
iterated using any of our programs from Chapter 2.

2x

0 2x
Figure 10.1 The graph of the doubling function.

Experiment 10.1 Use ITERATEI] or ITERATE2 to compute various orbits
of D. Record what you find.

Outcome. For almost any § > 0, it appears that the orbit of § “fills in” the
entire interval 0 < 8 < 2.

This is by no means the case, as graphical analysis shows.
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Exercise 10.2 Use graphical analysis to sketch the graphs of D?, D3, D4, .. ..
How many fixed points do you find for D? D? D* ...7? How many fixed

points does D™ have?

This exercise shows that many, many points in the interval 0 < z < 27
have orbits that are periodic under D, but the computer fails to find them!
This happens because all of these periodic points are repelling and hence
unstable. We have seen this phenomenon before: Recall from Chapter 4
that the functions z? — 2 and 4z(1 — z) have similar properties.

10.2 Sensitive Dependence

Now we come to the essential ingredient of a chaotic system, sensitive
dependence on initial conditions. Suppose we take two points 6y and &, on
the circle, and suppose that 6y and 8, are fairly close together. Suppose that d
is the distance measured along the circle between them. What happens when
we iterate T'7 Clearly, the distance between T'(6y) and T°(8;) has doubled (as
long as T'(8p) and T'(8,) are still close to each other). If we iterate again, the
distance between T7%(8y) and T?(8;) doubles again. Continuing, we see that
the distance between T"(6p) and T™(0,) is 2"d. So the orbits of 8y and 6,
are separating quite rapidly. After all, after only 10 iterations, the distance
between the two points is 2'%d = 1028d. See Figure 10.2.

49,

Figure 10.2 The squaring function doubles distances on the circle.
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This means that, no matter how close two orbits start out, after just a
few iterations they will be very far apart. The orbits separate from each
other exponentially. Think of what this means in terms of the computer.
We can specify a particular point on the circle only up to a finite number of
decimal places; any more decimal places will simply be disregarded by the
computer. This means that we will necessarily make a very small error when
we input a typical number into the computer. Now begin iterating; very
quickly we see that this small error is magnified so that the computed orbit
is very far away from the actual orbit. A small error in initial conditions
makes a big difference in what we see. This is sensitive dependence on initial
conditions and is the typical behavior in a chaotic system.

Project 10.3 This project gives you another way to understand sensitive
dependence on initial conditions. Modify the program ITERATEI so that it
displays not one orbit, but several orbits of the same function at the same
time. Your output should be in several columns, each column containing
the orbit of a different point. The first column should contain the iteration
count. The resulting “spreadsheet” is useful for companson of the behavior
of orbits of nearby initial points. See Table 2.3 for a sample of the output
from that program.

Experiment 10.4 Use the program in the previous project to compute and
display the first 100 points on the orbits of the points z¢9 = .5, zo = .501,
and zg = .5001 for the function F(z) = 4z(1 — z). What do you find?

Outcome. Despite the fact that the initial points .5, .501, and .5001 are all
relatively close together, after only a very few iterations, their orbits bear
no resemblance whatsoever to each other. This function possesses sensitive
dependence on initial conditions.

Experiment 10.5 Try the previous experiment with a variety of different
initial conditions. Record what you find. Do you ever find an initial condition
in the interval 0 < zp < 1 whose orbit is not sensitive to initial conditions?
Remember that the computer uses only a finite amount of accuracy when
reading your input, so if you use too many decimal places in your initial
input, the computer will just forget the additional digits.

Experiment 10.8 Perform Experiment 10.4 for the function Q(z) = z% — 2
using initial points in the interval —2 < z < 2. Does this function depend
sensitively on initial conditions?
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There is more to the story of sensitive dependence when we consider
Julia sets. To explain this, let’s stay with the squaring function T'. Suppose
zp is a point on the unit circle, and suppose that in polar form 2z, is given
by ro(cosfp + isinfp). Let’s erect a small “chunk” of a wedge around zp by
considering all complex numbers that satisfy 6; < 0§ < 6; and r; < r < r3,
where #) < 0y < 62 and r; < 1 < r;. This chunk is depicted in Figure 10.3.
Notice that we can make this chunk as small as we like by picking r; and r;
close to 1 and #; and #; close to 8. Let’s call this chunk W.

W

g

Figure 10.3

The amazing fact about the Julia set of T is that no matter how small we
choose W, the images T" (W) eventually meet any point in the plane, with
at most one exception. Figure 10.4 shows why this is true for the squaring
function. As we iterate T, the chunk grows larger and larger: The outer
radius increases toward infinity, whereas the inner radius shrinks to zero.
Similarly the angle of the chunk is doubled at each stage. Thus we see that,
no matter how small we choose W initially, iteration makes W expand until
its image eventually hits any point in the plane (with one exception, namely,
0).

This means that points on the Julia set of T have orbits that depend
very sensitively on initial conditions. Arbitrarily close to any point on the
circle is another point whose orbit eventually hits any point whatsoever in
the plane, with only one exception.

Amazingly, this property is true for all Julia sets, not just for the squaring
function. We cannot prove this here, unfortunately. However, this fact gives
one very good reason for the importance of the study of Julia sets. Points
in the Julia set have orbits that are the most unstable of all orbits.
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w

)

Figure 10.4

Further Exercises and Experiments

1. Consider the doubling function on the interval 0 < z < 1 given by

2z ifﬂgz{%
V(z)_{h-—l ifl<z<1

Use graphical analysis to decide how many periodic points of period n
the function V has. All the remaining exercises in this section deal with
the dynamics of V.

2. Compute the orbit under V of each of the following points:

. z =1
b.z=%
¢ o=}
d.z=$
& dm ]
f..:r:z-lli
g =15

3. Suppose that z is a rational number of the form p/q, where p and q are
integers and 0 < p < ¢. What can you say about the orbit of z under V
if ¢ i1s odd? What if ¢ = 2" for some natural number n?
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4. For each z satisfying 0 < z < 1, let’s associate a sequence of Os and 1s
to = that tells us roughly what happens to the orbit of z under V. This
sequence of 0s and 1s will be called the itinerary of z. It is defined as
follows. The first entry in the itinerary of z will be 0 if z < % or 1if
z > 3. The second entry will be 0if V(z) < 3, 1if V(z) > 1. In general,
the kth entry will be 0 if V*~!(z) < 3 or 1 if V*¥~!(z) > 4. So the
itinerary of the point 0 is 000... because 0 is fixed. The itinerary of 1} is
1000.... Identify the itinerary of each of the points in Exercise 2.

5. Do you see anything peculiar about the itinerary of z?7 In particular,
what is the relationship between the binary expansion of any z with
0 <z <1 and the itinerary of 27

6. What is the itinerary of V(z), given the itinerary of z7
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Chapter 11

Julia Sets of Other Functions

In previous chapters we have concentrated on Julia sets and the Man-
delbrot set associated to the quadratic functions Q.(z) = 2z? + ¢. There
were several reasons for this, some historical and some mathematical. The
quadratic family is the simplest nonlinear family of functions on the real
line or complex plane exhibiting the rich mathematical structures that we
have seen. But there are many, many other families of functions that exhibit
these and other phenomena. In this chapter we sample some of the behavior
of these functions. The beauty and complexity that we see is by no means
limited to the special functions that we study here. We urge you to sample
some of this interesting and appealing mathematics by experimenting with
other functions.

11.1 Higher-Degree Polynomials

Although every polynomial has a Julia set, the easiest polynomials with
which to work are those that have the special form FP.(z) = 2™ + ¢ with
n=3,4,5.... The exponent n is called the degree of this polynomial. Like
the quadratic functions, these polynomials have a single critical point at 0,
since 0 is the only point whose image is ¢. To compute the Julia set of P, you
may use any of the three methods discussed in Chapters 6 and 7, but some
modifications are necessary. The first difficulty that occurs i1s determining
when an orbit escapes to infinity under P.. The criterion for this turns out
to be exactly the same as in the case of quadratic functions. You should
verify this yourself by mimicking what we did in previous sections for Q..



160 CHAOS, FRACTALS, AND DYNAMICS

Exercise 11.1 For the family of functions P.(z) = z™ + ¢, show that:
a. If |z| > |c| and |z| > 2, then |P.(2)]| > |z|* (1 + £), where £ > 1.
b. Conclude from part (a) that if |c| > 2, then the critical orbit of P,
tends to infinity.
c. Conclude also that if |c| < 2, the filled in Julia set of P, lies inside
the circle of radius 2 centered at the origin.

This exercise allows us to modify our earlier Julia set programs so that
they compute the Julia sets for P(z) = 2" + <.

Project 11.2 Modify JULIA1 and JULIA3 so that they compute and display
the Julia sets of P.(z) = 2™ +¢. Your programs should allow the user to input
both n and c.

Experiment 11.3 Use these Julia set programs to investigate the dynamics
of the functions T¢(z) = 2° 4 ¢ for real values of c. What do you observe? Is
there any period doubling? Can you find saddle-node bifurcations? Can you
explain this using graphical analysis of the real function T.(z) = z° + ¢?

Outcome. It appears that either the Julia set is totally disconnected or else
consists of one large region. Graphical analysis shows that either T, has a
single attracting fixed point or else the orbit of the cntical point 0 escapes
to infinity. In Figure 11.1, we examine a bifurcation near ¢ = .3849.... Can
you explain this?

Experiment 11.4 Use these modified programs to check that the polyno-
mials P, have basically the same properties as the quadratic functions. For
example,

a. If the cntical orbit escapes, the Julia set is fractal dust.

b. If P, has an attracting cycle, then the critical orbit is attracted to it

(use ITERATEA4).
c. If P. has an attracting cycle, then the Julia set of P, is connected.

The backward iteration method for computing Julia sets works for P,
as well, but the algorithm is more complicated. To use this method, we
must compute nth roots rather than square roots. Each nonzero complex
number has exactly n of these nth roots. This can be seen by using the
polar representation of a complex number introduced in Chapter 6.

Suppose

z =1(cosf + 1sin )
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Figure 11.1 The Julia sets of (a) z* + .384, (b) z° + .3883
and (c) z° + .3885 computed using JULIA1 with 50 iterations.

Then we know that
22 = r%(cos 20 + isin 260)

Therefore we may use complex multiplication to find

2323'32

r*((cos 8 cos 26 — sin 8 sin 28) + i(cos 8 sin 26 + sin 8 cos 26))
r*(cos(8 + 26) + isin(8 + 26))
r*(cos 30 + isin 36)
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Using this fact and complex multiplication again, we find
z* = r%(cos 40 + isin 46)

and, in general,
z" = r*(cos né + 1 sin néf)

That is, raising z to the nth power is the same as raising its modulus to the
nth power and multiplying its polar angle by n.

So how do we use this to find nth roots? Recall that, for square roots,
we simply took the square root of the modulus and then selected either 6/2
or /2 4+ « for the polar angle. For nth roots, the procedure is similar but

more complicated. If
z =r(cosf + isinf)

then the n th root of z has modulus »!/® and polar angle one of
6 0+2x 0+4rx 6+2(n—1)r

? ’ =Bl |
n n n n

For example, the cube roots of 1 all have modulus 1. The polar angles are

27 4w
B:UI_—!_
3 3

which we find by setting § = 0 and n = 3 in the preceding list. It follows
that the cube roots of 1 are

1=cos0+1san0

_% + ?i = cos(27/3) + 1sin(2x/3)
_% - _‘;.Ei = cos(4w/3) + isin(4x/3)

You may check this easily by simply cubing all of these complex numbers.
Similarly, the fourth roots of 16: all have modulus 2. The polar angles are

Exercise 11.5 Compute the nth roots of each of the following complex
numbers:



CHAPTER 11 JULIA SETS OF OTHER FUNCTIONS 163

0 TP

Project 11.6 Use these facts presented in the section to modify JULIA2
so that the new program computes the Julia set of P, using the backward
iteration method. The major change from our previous JULIA2 will be
the random selection of one of the nth roots. How will you accomplish
this? Use this program to experiment with various Julia sets of higher-degree
polynomials.

Since the polynomials P, have a single critical orbit, there is an analogue
of the Mandelbrot set for each integer n. As for the quadratic functions, this
set is the collection of c-values for which the critical orbit does not escape.
By our experiment above, this is precisely the set of ¢-values for which the
Julia set is connected. This set is called the degree n bifurcation set.

Project 11.7 Modify MANDELBROT1-4 so that the new programs display
the degree n bifurcation set. Some of the results of these modifications are
displayed in Figure 11.2.

Figure 11.2 The degree 3 and 4 bifurcation sets.
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The polynomials P.(z) = z" + ¢ are quite special because they have only
one critical orbit. Most polynomials have more than one of these orbits. The
computation of critical orbits in more general cases necessitates the use of cal-
culus (critical points are simply the points at which the derivative vanishes),
so we won’t attempt to go into depth on this matter here. For example,
using elementary calculus, it can be shown that the cubic polynomial

P(z)=24+Az+ B

has two critical points given by :i:\/ —-A/3.

For general polynomials, the algorithms used to produce Julia sets before
still work, since the Julia set is the boundary between the orbits that escape
and those that do not. Therefore, you may easily modify JULIA1 or JULIA3
to work for a general polynomial. The backward iteration method is not
practical however because it is generally impossible to solve an equation
such as

®t+ap_12" ' +---+a1z24+ap=w
for z. This would be the essential step in backward iteration.

Project 11.8 Use JULIA2 and JULIA3 to compute various Julia sets of
degree n polynomials. Some typical patterns are displayed in Figure 11.3.

| 2a S0

- ™
L
" w
-
- -
.
"

(a)

Figure 11.3 Julia sets for (a) z* +1i and (b) z* — .574 + .2711
computed using JULIA3.
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11.2 Euler’s Formula

In this section we introduce one of the most interesting and surprising
formulas in all of mathematics, Euler’s formula. We will need this formula
in the next section when we investigate the Julia sets of transcendental func-

tions.

Euler’s formula relates the exponential function to the trigonometric
functions sinz and cosz. The usual exponential function is denoted by
e* or exp z, where e is the base of the natural logarithm. The number e is
approximately equal to 2.7128.... This function is important in many areas
of mathematics and science, where it is used to measure growth and decline
processes such as population growth, compound interest, and radioactive
decay. The graph of e* is displayed in Figure 11.4.

y=x

Figure 11.4 The graph of the exponential function.

Euler’s formula allows us to begin discussing complex analogues of the
exponential and trigonometric functions. These functions are not as well
known as their real counterparts, but we will see that their Julia sets are quite
spectacular from a geometric and dynamic point of view. Euler’s formula is

e =cosz+1isinz
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We cannot prove this formula here. You will see why it is true if you study
infinite series as part of a calculus course. We ask you at this stage simply
to accept this formula as the definition of the exponential of an imaginary
number. Note the surprising fact that the exponential function, which in-
tuitively has nothing whatsoever to do with trigonometry, is actually a sum
of sines and cosines. This formula has many ramifications in mathematics,
in particular in the study of differential equations, a field that is one of the
most important applications of calculus.
Letting z = r in Euler’s formula yields the amazing fact that

e =coswr+isinwy = —1

There are perhaps no “stranger” numbers in all of mathematics than e,,
and w. Yet when these three numbers are combined as above, they give the
simple value -1!

Euler’s formula allows us to define the complex exponential function. By
the usual rules of exponentiation, we should have

El+ll — E E'

By Euler’s formula, if z = z + 1y, we must therefore have

e EI=+u -

e e“(cosy +isiny)

This is the formula that allows us to use the real exponential, sine, and cosine
to compute the complex exponential function.

Exercise 11.9 Compute the value of e* for each of the following:

a. z=2+1x

b. z = 2m:

c. z=1+41ix/4
d. z2=4=4+0
e. z=ww+ 2%

One major difference between the exponential function and polynomials
is the fact that points that are far from the origin in the complex plane are
no longer taken even further away by the function. For example, if z = —10,
then

e* = e 1% = 000045. ..

which is very close to 0. This fact will become important when we discuss
the Julia set of the exponential in the next section.
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11.3 Julia Sets of Transcendental Functions

Functions such as the exponential, the sine, and the cosine are called
transcendental functions. Unlike polynomials, they cannot be computed by
a finite number of arithmetic operations. Nevertheless, using the computer,
we may still evaluate and iterate these functions.

For transcendental functions, we concentrate on the set of points whose
orbits escape. For technical reasons, this set contains the Julia set. This may
appear to contradict the definition we gave for polynomials (the Julia set was
the boundary of the set of escaping points for polynomials), but actually it
does not. For transcendental functions such as the sine or cosine, any point
whose orbit escapes is actually on the boundary of the set of escaping orbits.
That is, arbitrarily close to any point whose orbit escapes there must be a
point whose orbit does not (a repelling periodic point, for instance). This
means that all escaping points lie in the Julia set.

For transcendental functions, orbits usually escape to infinity in certain
preferred directions that depend upon the function. For the complex expo-
nential, any orbit that escapes must do so with an ever-increasing real part.
To see why this is so, consider a point on the negative real axis such as —10.
The image of this point, as we saw earlier, is e~ = .000045..., which is
very close to 0. Similarly, if we take a point of the form —10 4 i1y, the image
is

e %(cosy + isiny)
The modulus of this point is again e '°. (Do you see why?) So the image of
—10 + 1y is again close to 0, no matter what y is. On the other hand, e'° is
approximately equal to 22,026, which is quite large, and

e!®* = % cosy + isiny)

which has modulus ¢°.

Thus to compute the Julia set of the exponential, we will make use of
the following algorithm:

1. Select a 200 x 200 grid in the plane.
2. Iterate each point in the grid up to 20 times.

3. If the real part of any point on the orbit is larger than 50, stop the
iteration and color the original point white.
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4. Otherwise, color the original point black. Thus, this algorithm pro-
duces a picture whose white points lie in the Julia set.

As part of this algorithm, we use the bound 50 to check whether an
orbit escapes. This may seem like a relatively small number, but think of
the image of 50 under the exponential; e*® > 5 x 10?! is huge, and the next
image will be astronomically large!

Project 11.10 Write a program called JULIAEXP that uses the preceding
algorithm to compute the Julia set of E.(z) = ce®, where ¢ is a complex
parameter.

Remark. On many computers, if you encounter a small number such as
e 50 the computer will round off this number and give you 0 as a result.
This is perfectly acceptable in this program. On some computers, however,
you may receive an “underflow” error message. If this is the case, you may
remedy this by simply redefining e***¥ = 0 whenever z < —50. This will
have the effect of eliminating the underflow.

Experiment 11.11 Use JULIAEXP to compute the Julia sets of ce* for the
following c-values:

2. c=.2
b. ¢=1
C. c=—4 41
d. c=1+ 2.

You should compute these Julia sets in the square -3 < z < 3, -3 <
y < 3, although other windows may show more detail.

Outcome. Note that the Julia sets for exponential functions look quite
different from those of polynomials. See Figure 11.5.

As you might expect from Euler’s formula, there is a complex analogue
of the sine and cosine. To derive formulas for these functions, we begin with
Euler’s formula for z and —z:

e'* = cosz +isinz
e'(~%) = cos(—z) + isin(—z)
= COSZT —1SINZ
This last equality follows from the facts from trigonometry that cos(—z) =
cos z and sin(—z) = —sinz. If we now add these two equations and multiply
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Figure 11.5 The Julia set of (1 + 2i)e*.

the result by %, we find

—;- (ci' . c"i') = COSZ

Subtracting and multiplying by %, we find

% (ci' - :'i") =318INZ

Since —i -1 = 1, multiplication by —i thus yields

.. (ci' - c_i') = sinz

2

This motivates our definition of the complex sine and cosine as

SNz = —% (ei“ - e““)
cosz = % (e"" + a"i‘)

169

If you have encountered the hyperbolic sine and cosine functions in your
mathematical travels, you will note a close relationship between them and
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the complex sine and cosine. Indeed, if z = z + 1y, we may write
sin z = sin(z + 1y)

_é (,_,"(Hfr) _ E-i(=+il))

--; (e"ei' - e'e""")

- _%. (""(m: +isinz) — e¥(cos(—z) +“in(_=)))

_% (g-' cosz +1e Vsinz — e’ cosz + 1e’ ninz)

(257 a4 (257 o

The expressions
e?+e 7 ¥ —-e?
2 - 2
have names; they are the hyperbolic cosine and Ayperbolic sine functions,
defined by

=¥
coshy = c'-l-2e
. e? —e™?
nnhy=——§-—

These functions are not always available as built-in functions in BASIC. How-

ever, they are easily incorporated into BASIC programs using the function
definition DEF FN statement.

Thus we have
sin(z +1y) = sinzcoshy + icoszsinhy
which is reminiscent of the trigonometric formula for the sine of a sum of
two numbers. The analogous formula
cos(z +iy) = coszcoshy —isinzsinhy

also holds; you should check this for yourself.

These expressions allow us to compute the complex sine and cosine func-
tions in terms of real exponential, sine, and cosine functions. For example,

sin(ir) = -1 (e'z - e )
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Exercise 11.12 Evaluate each of the following expressions:
a. cos(w + iw)
. sin(w/2 4 i7)
. cos(z)
cos(2r)  (Remember, e™ = —1, so e’ =™ = 1.)
sin(2mr + 41)

-

As with the complex exponential, points whose orbits escape to infinity
lie in the Julia sets of sine and cosine. For sine and cosine, the direction of
approach to infinity is different from the exponential. Orbits tend to infinity
in the direction of either the positive or negative imaginary axis. For this
reason, we say that an orbit “escapes” if its imaginary part ever becomes
larger than 50 in absolute value.

Figure 11.6 displays a program called JULIASIN, which computes the
Julia set of sinz. As in the program JULIAEXP, this program displays the
Julia set in white, not black. The image generated by this program, the Julia
set of sin z, is shown in Figure 11.7. Note that all points on the real axis
are colored black, meaning that they are not in the Julia set — a fact we
know from Chapter 1 where we saw that all orbits of sin z for real values of

z tended to 0.

Project 11.13 Modify JULIASIN so that it computes
a. The Julia set of ¢sin z for complex e.
b. Enlargements of the Julia sets of ¢sin z.

c. The Julia set of ccos z via a program called JULIACOS.

The programs in this project take quite a while to run because of the
many evaluations of the sine, cosine, and exponential functions necessary to
compute the orbits. These function calls are much more time-consuming than
the simple additions and multiplications necessary to compute polynomials.

Experiment 11.14 Use JULIASIN or JULIACOS to compute the Julia sets
of

a. cCosz
b. .51cosz
C. 18In z
d. 2sinz
e. TCOSZ

f. 2.98cosz
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REM program JULIASIN
FOR i=0 TO 200
FOR j=0 TO 200
x0=-4+4"*i/100
yO=4-4"j/100
X = x0
y=y0
FOR n=1T0O 25
X1 =SIN (x) * ( EXP (y) + EXP (-y)) /2
y1=COS (x) * (EXP (y) -EXP (-y)) /2
IF ABS (y1)>50 GOTO 20
X = X1
y=yl
NEXT n
PSET (i, ])
20 NEXT |
NEXT i
END

Figure 11.8 The program JULIASIN.

g. 2.96cosz
In each case, it is best to begin with the square |z|, |y| < 4.

Outcome. For cos z, recall that all points on the real axis tend to the fixed

point .73908... under iteration of the cosine function. The black region
found in Figure 11.8 represents the basin of attraction of this fixed point in
the complex plane. See also Figure 11.9.

11.4 Exploding Julia Sets

Recall that the Julia sets of polynomials occasionally underwent dramatic
changes when the function experienced a saddle-node or period-doubling
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Figure 11.7 The Julia set of sin z.

Figure 11.8 The Julia set of cos z.

bifurcation. The same is true for transcendental functions. Often, these
changes are quite spectacular for the complex sine, cosine, or exponential.
The following experiments allow you to analyze some of these bifurcations,

which we call ezplosions. This complex dynamical behavior was observed for
the first time in the mid-1980s.
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Figure 11.9 The Julia sets of 2.98 cos z and 2.967 cos z.

Experiment 11.15 Consider the family ce® with ¢ > 0. Sketch the graph
of ce* for various c-values. For which c-values do you expect to find an
attracting fixed point? For which c-values do you expect all real numbers
to have orbits which escape? Now compute the Julia sets for the complex
exponential ce* with ¢ > 0. What do you see? Record your observations.

Outcome. For small, positive values of ¢, the graph of ce® crosses the
diagonal in two places, whereas if ¢ is large enough, the graph never crosses
the diagonal. The precise point at which the graph changes its configuration
isc= 1/e = 36788..., where e is the base of the natural logarithm. The
Julia sets of ce* change dramatically at ¢ = 1/e. In fact it is known that
the Julia set is quite small when ¢ < 1/e and that the Julia set is the whole
complex plane if ¢ > 1/e. This is quite a dramatic change indeed!

Experiment 11.16 A similar phenomenon occurs in the family iccos z for
¢ > 0. Can you determine where this occurs? Can you explain this?

Experiment 11.17 Compute the Julia sets of (1 + ci)sinz for ¢ > 0. When
¢ = 0, we find the Julia set of sinz, as depicted in Figure 11.6. When ¢
increases, these Julia sets begin to change in an interesting fashion. However,
nobody can explain these changes fully.
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Further Exercises and Experiments

1. Consider the family of functions F(z) = z° + ic where ¢ is a real param-
eter.

a. Show that F preserves the imaginary axis in the sense that F(iy) =
i(c—v°).

b. Use ITERATE] or ITERATE2 to experiment with the real function
h(y) = ¢ — y*. For which values of ¢ does this function undergo a
period-doubling bifurcation? Are there any subsequent period dou-
blings?

c. Use JULIA1 or JULIA2 to plot the Julia sets of these functions for

various c-values.

d. For which c-values does 0 lie on a cycle of period 27

e. Use JULIA2 to determine experimentally which values of ¢ lead to
Julia sets that resemble fractal dust.

f. Can you explain all of this using graphical analysis?

g. What does the degree 3 bifurcation set predict about this family and
its period doublings?

2. Compute the Julia set of (.6 + .8:¢)sinz and (.61 + 81i)sinz. Use 200
iterations to determine whether or not a point escapes in the latter case.
Do you see another explosion?

3. The bifurcation set for the family cexp z may also be computed. All we
need to know is which orbits play the role of the critical orbit, as in the
case of the Mandelbrot set. For exponential functions, the critical orbit
is always the orbit of 0. The reason for this is that 0 is the omitted value
of exp z: There is no z for which exp z = 0. The algorithm is then to test
each point in a grid in the complex c-plane to see if the corresponding
critical orbit of cexp z ever has a real part exceeding 50. If so, color
¢ black; if not, leave ¢ white. Write a program called EXPBIF that
effects this algorithm and then use it to compute the bifurcation set of
the exponential function.
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For Further Reading

There are a number of books that have appeared in recent years and
that shed light on the topics of chaos, fractals, and dynamical systems from
a variety of points of view. We particularly recommend the following.

Gleick, J. Chaos: Making a New Science. New York: Viking, 1987.

This book is the story of how chaos and fractals were found to play such
an important role in all areas of science and mathematics in the 1970s and
1980s. It is basically a series of portraits of the scientists who discovered
these ideas and how they worked in isolation at first. It is a wonderful and
readable account of how these mathematical ideas developed.

Peitgen, H.-O., and Richter, P. The Beauty of Fractals. New York: Springer-
Verlag, 1986.
This “coffee table” book features many beautiful color illustrations of

Julia sets, the Mandelbrot set, and other images from dynamical systems
theory. The text itself is a more advanced treatment of some of the topics
we have discussed in this book. There are also a number of references to the

scientific research literature.

Peitgen, H.-O., and Saupe, D., eds. The Science of Fractal Images. New
York: Springer-Verlag, 1988.

This book presents a series of five articles, which give a “how-to” ap-
proach to using the computer to generate the fractal images from dynamical
systems theory. Many of the algorithms presented in this book are refine-
ments and extensions of the algorithms presented in this book. Consequently,
the level of the presentation is more advanced.

Mandelbrot, B. The Fractal Geometry of Nature. San Francisco: Freeman,
1983.
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This book is the author’s definitive statement on the scope and purpose
of fractal geometry. At times the book may be difficult to read, even for
experts, but it certainly contains a wealth of ideas and applications.

Barnsley, M. Fractals Everywhere. Boston: Academic Press, 1988.

This is one of the first textbooks on fractal geometry. It is more advanced
in the sense that readers should be familiar with both calculus and linear
algebra. It contains a number of applications of the subject in the area of
data and image compression.

Devaney, Robert L. An Introduction to Chaotic Dynamical Systems, 2nd ed.
Menlo Park: Addison-Wesley, 1989.

We modestly recommend this book to readers who have a background in
calculus and who wish to pursue the study of the mathematical aspects of
chaotic dynamical systems theory.
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Chaos, fractals, and dynamics are important and exciting topics

in contemporary mathematics. This book introduces these three
topics using a combination of hands-on computer experimentation
and precalculus mathematics. Students are led through a series of
experiments that produce fascinating computer graphics images
of Julia sets, the Mandelbrot set, and fractals. The basic ideas of
dynamics—chaos, iteration, and stability—are illustrated via com-
puter projects. Numerous full-color and black-and-white images
convey the beauty of these mathematical ideas.

This text is appropriate for high school students, college students,
and mathematics teachers, as well as others who wish to experience
and experiment with contemporary mathematics. It provides an
ideal vehicle for combining the computer and rigorous mathematics
in an essential fashion.
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